Files
video-subtitle-remover/README.md
YaoFANGUK 2b9360c299 init
2023-10-25 16:38:16 +08:00

129 lines
5.1 KiB
Markdown
Executable File
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
## 项目简介
![License](https://img.shields.io/badge/License-Apache%202-red.svg)
![python version](https://img.shields.io/badge/Python-3.8+-blue.svg)
![support os](https://img.shields.io/badge/OS-Windows/macOS/Linux-green.svg)
Video-subtitle-remover (vsr) 是一款基于AI技术将视频中的硬字幕去除的软件。
## 演示
<p style="text-align:center;"><img src="https://github.com/YaoFANGUK/video-subtitle-remover/raw/main/design/demo.gif" alt="demo.gif"/></p>
## 源码使用说明
#### 1. 下载安装Miniconda
- Windows: <a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-Windows-x86_64.exe">Miniconda3-py38_4.11.0-Windows-x86_64.exe</a>
- MacOS<a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-MacOSX-x86_64.pkg">Miniconda3-py38_4.11.0-MacOSX-x86_64.pkg</a>
- Linux: <a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-Linux-x86_64.sh">Miniconda3-py38_4.11.0-Linux-x86_64.sh</a>
#### 2. 创建并激活虚机环境
1切换到源码所在目录
```shell
cd <源码所在目录>
```
> 例如如果你的源代码放在D盘的tools文件下并且源代码的文件夹名为video-subtitle-remover就输入 ```cd D:/tools/video-subtitle-remover-main```
2创建激活conda环境
```shell
conda create -n videoEnv python=3.8
```
```shell
conda activate videoEnv
```
#### 3. 安装依赖文件
请确保你已经安装 python 3.8+使用conda创建项目虚拟环境并激活环境 (建议创建虚拟环境运行,以免后续出现问题)
- GPU用户(有N卡)
- 安装CUDA和cuDNN
<details>
<summary>Linux用户</summary>
<h5>(1) 下载CUDA 11.7</h5>
<pre><code>wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run</code></pre>
<h5>(2) 安装CUDA 11.7</h5>
<pre><code>sudo sh cuda_11.7.0_515.43.04_linux.run</code></pre>
<p>1. 输入accept</p>
<img src="https://i.328888.xyz/2023/03/31/iwVoeH.png" width="500" alt="">
<p>2. 选中CUDA Toolkit 11.7如果你没有安装nvidia驱动则选中Driver如果你已经安装了nvidia驱动请不要选中driver之后选中install回车</p>
<img src="https://i.328888.xyz/2023/03/31/iwVThJ.png" width="500" alt="">
<p>3. 添加环境变量</p>
<p>在 ~/.bashrc 加入以下内容</p>
<pre><code># CUDA
export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}</code></pre>
<p>使其生效</p>
<pre><code>source ~/.bashrc</code></pre>
<h5>(3) 下载cuDNN 8.4.1</h5>
<p>国内:<a href="https://pan.baidu.com/s/1Gd_pSVzWfX1G7zCuqz6YYA">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a> 提取码57mg</p>
<p>国外:<a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a></p>
<h5>(4) 安装cuDNN 8.4.1</h5>
<pre><code> tar -xf cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz
mv cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive cuda
sudo cp ./cuda/include/* /usr/local/cuda-11.7/include/
sudo cp ./cuda/lib/* /usr/local/cuda-11.7/lib64/
sudo chmod a+r /usr/local/cuda-11.7/lib64/*
sudo chmod a+r /usr/local/cuda-11.7/include/*</code></pre>
</details>
<details>
<summary>Windows用户</summary>
<h5>(1) 下载CUDA 11.7</h5>
<a href="https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_516.01_windows.exe">cuda_11.7.0_516.01_windows.exe</a>
<h5>(2) 安装CUDA 11.7</h5>
<h5>(3) 下载cuDNN 8.2.4</h5>
<p><a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-windows-x64-v8.2.4.15.zip">cudnn-windows-x64-v8.2.4.15.zip</a></p>
<h5>(4) 安装cuDNN 8.2.4</h5>
<p>
将cuDNN解压后的cuda文件夹中的bin, include, lib目录下的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\对应目录下
</p>
</details>
- 安装paddlepaddle:
- windows:
```shell
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
```
- Linux:
```shell
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
```
> 如果安装cuda 10.2请对应安装7.6.5的cuDNN并使用对应cuda版本的paddlepaddle**请不要使用cuDNN v8.x 和 cuda 10.2的组合**
> 如果安装cuda 11.2请对应安装8.1.1的cuDNN并使用对应cuda版本的paddlepaddle**30系列以上的显卡驱动可能不支持 cuda 11.2及以下版本的安装**
- 安装其他依赖:
```shell
pip install -r requirements.txt
```
#### 4. 运行程序
- 运行命令行版本(CLI)
```shell
python ./backend/main.py
```