mirror of
https://github.com/YaoFANGUK/video-subtitle-remover.git
synced 2026-02-04 04:34:41 +08:00
195 lines
7.1 KiB
Markdown
Executable File
195 lines
7.1 KiB
Markdown
Executable File
简体中文 | [English](README_en.md)
|
||
|
||
## 项目简介
|
||
|
||

|
||

|
||

|
||
|
||
Video-subtitle-remover (VSR) 是一款基于AI技术,将视频中的硬字幕去除的软件。
|
||
主要实现了以下功能:
|
||
- **无损分辨率**将视频中的硬字幕去除,生成去除字幕后的文件
|
||
- 通过超强AI算法模型,对去除字幕文本的区域进行填充(非相邻像素填充与马赛克去除)
|
||
- 支持自定义字幕位置,仅去除定义位置中的字幕(传入位置)
|
||
- 支持全视频自动去除所有文本(不传入位置)
|
||
|
||
<p style="text-align:center;"><img src="https://github.com/YaoFANGUK/video-subtitle-remover/raw/main/design/demo.png" alt="demo.png"/></p>
|
||
|
||
**使用说明:**
|
||
|
||
- 有使用问题请加群讨论,QQ群:806152575
|
||
- 直接下载压缩包解压运行,如果不能运行再按照下面的教程,尝试源码安装conda环境运行
|
||
|
||
**下载地址:**
|
||
|
||
Windows GPU版本v1.0.0(GPU):
|
||
|
||
- 百度网盘: <a href="https://pan.baidu.com/s/1UX3f1lXx-yXiiOS4FSqONQ?pwd=vsr1">vsr_windows_gpu_v1.1.0.zip</a> 提取码:**vsr1**
|
||
|
||
- Google Drive: <a href="https://drive.google.com/drive/folders/1NRgLNoHHOmdO4GxLhkPbHsYfMOB_3Elr?usp=sharing">vsr_windows_gpu_v1.1.0.zip</a>
|
||
|
||
> 仅供具有Nvidia显卡的用户使用(AMD的显卡不行)
|
||
|
||
## 演示
|
||
|
||
- GUI版:
|
||
|
||
<p style="text-align:center;"><img src="https://github.com/YaoFANGUK/video-subtitle-remover/raw/main/design/demo2.gif" alt="demo2.gif"/></p>
|
||
|
||
- <a href="https://b23.tv/guEbl9C">点击查看演示视频👇</a>
|
||
|
||
<p style="text-align:center;"><a href="https://b23.tv/guEbl9C"><img src="https://github.com/YaoFANGUK/video-subtitle-remover/raw/main/design/demo.gif" alt="demo.gif"/></a></p>
|
||
|
||
## 源码使用说明
|
||
|
||
> **无Nvidia显卡请勿使用本项目**,最低配置:
|
||
>
|
||
> **GPU**:GTX 1060或以上显卡
|
||
>
|
||
> CPU: 支持AVX指令集
|
||
|
||
#### 1. 下载安装Miniconda
|
||
|
||
- Windows: <a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-Windows-x86_64.exe">Miniconda3-py38_4.11.0-Windows-x86_64.exe</a>
|
||
|
||
- Linux: <a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-Linux-x86_64.sh">Miniconda3-py38_4.11.0-Linux-x86_64.sh</a>
|
||
|
||
#### 2. 创建并激活虚机环境
|
||
|
||
(1)切换到源码所在目录:
|
||
```shell
|
||
cd <源码所在目录>
|
||
```
|
||
> 例如:如果你的源代码放在D盘的tools文件下,并且源代码的文件夹名为video-subtitle-remover,就输入 ```cd D:/tools/video-subtitle-remover-main```
|
||
|
||
(2)创建激活conda环境
|
||
```shell
|
||
conda create -n videoEnv python=3.8
|
||
```
|
||
|
||
```shell
|
||
conda activate videoEnv
|
||
```
|
||
|
||
#### 3. 安装依赖文件
|
||
|
||
请确保你已经安装 python 3.8+,使用conda创建项目虚拟环境并激活环境 (建议创建虚拟环境运行,以免后续出现问题)
|
||
|
||
- 安装CUDA和cuDNN
|
||
|
||
<details>
|
||
<summary>Linux用户</summary>
|
||
<h5>(1) 下载CUDA 11.7</h5>
|
||
<pre><code>wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run</code></pre>
|
||
<h5>(2) 安装CUDA 11.7</h5>
|
||
<pre><code>sudo sh cuda_11.7.0_515.43.04_linux.run</code></pre>
|
||
<p>1. 输入accept</p>
|
||
<img src="https://i.328888.xyz/2023/03/31/iwVoeH.png" width="500" alt="">
|
||
<p>2. 选中CUDA Toolkit 11.7(如果你没有安装nvidia驱动则选中Driver,如果你已经安装了nvidia驱动请不要选中driver),之后选中install,回车</p>
|
||
<img src="https://i.328888.xyz/2023/03/31/iwVThJ.png" width="500" alt="">
|
||
<p>3. 添加环境变量</p>
|
||
<p>在 ~/.bashrc 加入以下内容</p>
|
||
<pre><code># CUDA
|
||
export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}}
|
||
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}</code></pre>
|
||
<p>使其生效</p>
|
||
<pre><code>source ~/.bashrc</code></pre>
|
||
<h5>(3) 下载cuDNN 8.4.1</h5>
|
||
<p>国内:<a href="https://pan.baidu.com/s/1Gd_pSVzWfX1G7zCuqz6YYA">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a> 提取码:57mg</p>
|
||
<p>国外:<a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a></p>
|
||
<h5>(4) 安装cuDNN 8.4.1</h5>
|
||
<pre><code> tar -xf cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz
|
||
mv cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive cuda
|
||
sudo cp ./cuda/include/* /usr/local/cuda-11.7/include/
|
||
sudo cp ./cuda/lib/* /usr/local/cuda-11.7/lib64/
|
||
sudo chmod a+r /usr/local/cuda-11.7/lib64/*
|
||
sudo chmod a+r /usr/local/cuda-11.7/include/*</code></pre>
|
||
</details>
|
||
|
||
<details>
|
||
<summary>Windows用户</summary>
|
||
<h5>(1) 下载CUDA 11.7</h5>
|
||
<a href="https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_516.01_windows.exe">cuda_11.7.0_516.01_windows.exe</a>
|
||
<h5>(2) 安装CUDA 11.7</h5>
|
||
<h5>(3) 下载cuDNN 8.2.4</h5>
|
||
<p><a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-windows-x64-v8.2.4.15.zip">cudnn-windows-x64-v8.2.4.15.zip</a></p>
|
||
<h5>(4) 安装cuDNN 8.2.4</h5>
|
||
<p>
|
||
将cuDNN解压后的cuda文件夹中的bin, include, lib目录下的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\对应目录下
|
||
</p>
|
||
</details>
|
||
|
||
|
||
- 安装GPU版本Paddlepaddle:
|
||
|
||
- windows:
|
||
|
||
```shell
|
||
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
|
||
```
|
||
|
||
- Linux:
|
||
|
||
```shell
|
||
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
|
||
```
|
||
|
||
- 安装GPU版本Pytorch:
|
||
|
||
```shell
|
||
conda install pytorch==2.0.1 torchvision==0.15.2 pytorch-cuda=11.7 -c pytorch -c nvidia
|
||
```
|
||
或者使用
|
||
```shell
|
||
pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu117
|
||
```
|
||
|
||
- 安装其他依赖:
|
||
|
||
```shell
|
||
pip install -r requirements.txt
|
||
```
|
||
|
||
|
||
#### 4. 运行程序
|
||
|
||
- 运行图形化界面
|
||
|
||
```shell
|
||
python gui.py
|
||
```
|
||
|
||
- 运行命令行版本(CLI)
|
||
|
||
```shell
|
||
python ./backend/main.py
|
||
```
|
||
|
||
## 常见问题
|
||
1. CondaHTTPError
|
||
|
||
将项目中的.condarc放在用户目录下(C:/Users/<你的用户名>),如果用户目录已经存在该文件则覆盖
|
||
|
||
解决方案:https://zhuanlan.zhihu.com/p/260034241
|
||
|
||
2. 7z文件解压错误
|
||
|
||
解决方案:升级7-zip解压程序到最新版本
|
||
|
||
3. 4090使用cuda 11.7跑不起来
|
||
|
||
解决方案:改用cuda 11.8
|
||
|
||
## 赞助
|
||
<img src="https://i.imgur.com/EMCP5Lv.jpeg" width="600">
|
||
|
||
| 捐赠者 | 累计捐赠金额 | 赞助席位 |
|
||
| --- | --- | --- |
|
||
| 坤V | 400.00 RMB | 金牌赞助席位 |
|
||
| 陈凯 | 50.00 RMB | 银牌赞助席位 |
|
||
| Tshuang | 20.00 RMB | 银牌赞助席位 |
|
||
| 很奇异| 15.00 RMB | 银牌赞助席位 |
|
||
| 何斐| 10.00 RMB | 银牌赞助席位 |
|
||
| 长缨在手| 6.00 RMB | 银牌赞助席位 |
|
||
| Leo| 1.00 RMB | 铜牌赞助席位 |
|