16 Commits
1.1.1 ... main

Author SHA1 Message Date
天涯古巷
a577efd3e1 Update README.md
Some checks failed
Docker Build and Push / check-secrets (push) Successful in 10s
Docker Build and Push / build-and-push (cuda, 11.8) (push) Has been skipped
Docker Build and Push / build-and-push (cuda, 12.6) (push) Has been skipped
Docker Build and Push / build-and-push (cuda, 12.8) (push) Has been skipped
Docker Build and Push / build-and-push (directml, latest) (push) Has been skipped
Build Windows CUDA 11.8 / build (push) Has been cancelled
Build Windows CUDA 12.6 / build (push) Has been cancelled
Build Windows CUDA 12.8 / build (push) Has been cancelled
Build Windows DirectML / build (push) Has been cancelled
2025-12-03 08:40:41 +08:00
方耀
2bb2d54314 ganxie lyons
Some checks failed
Docker Build and Push / check-secrets (push) Successful in 23s
Docker Build and Push / build-and-push (cuda, 11.8) (push) Has been skipped
Docker Build and Push / build-and-push (cuda, 12.6) (push) Has been skipped
Docker Build and Push / build-and-push (cuda, 12.8) (push) Has been skipped
Docker Build and Push / build-and-push (directml, latest) (push) Has been skipped
Build Windows CUDA 11.8 / build (push) Has been cancelled
Build Windows CUDA 12.6 / build (push) Has been cancelled
Build Windows CUDA 12.8 / build (push) Has been cancelled
Build Windows DirectML / build (push) Has been cancelled
2025-06-26 14:43:41 +08:00
天涯古巷
7049a24883 Update README.md
Some checks failed
Docker Build and Push / check-secrets (push) Successful in 12s
Docker Build and Push / build-and-push (cuda, 11.8) (push) Has been skipped
Docker Build and Push / build-and-push (cuda, 12.8) (push) Has been skipped
Docker Build and Push / build-and-push (cuda, 12.6) (push) Has been skipped
Docker Build and Push / build-and-push (directml, latest) (push) Has been skipped
Build Windows CUDA 11.8 / build (push) Has been cancelled
Build Windows CUDA 12.6 / build (push) Has been cancelled
Build Windows CUDA 12.8 / build (push) Has been cancelled
Build Windows DirectML / build (push) Has been cancelled
2025-05-13 10:35:27 +08:00
天涯古巷
7e0ed62b9e Merge pull request #151 from eritpchy/patch-2
Some checks failed
Docker Build and Push / check-secrets (push) Successful in 5s
Docker Build and Push / build-and-push (cuda, 12.6) (push) Has been skipped
Docker Build and Push / build-and-push (directml, latest) (push) Has been skipped
Docker Build and Push / build-and-push (cuda, 11.8) (push) Has been skipped
Docker Build and Push / build-and-push (cuda, 12.8) (push) Has been skipped
Build Windows CUDA 11.8 / build (push) Has been cancelled
Build Windows CUDA 12.6 / build (push) Has been cancelled
Build Windows CUDA 12.8 / build (push) Has been cancelled
Build Windows DirectML / build (push) Has been cancelled
2025年5月积累更新
2025-05-13 09:49:04 +08:00
Jason
7a5384ad95 更新README 2025-05-06 22:10:11 +08:00
Jason
b40ab7d921 发布docker镜像 2025-05-06 21:18:32 +08:00
Jason
7304905a84 支持CI自动发布 2025-04-25 13:01:51 +08:00
Jason
150923b409 Update requirements.txt 2025-04-25 13:01:40 +08:00
Jason
746db4bced DirectML版本支持运行STTN模型(Windows) 2025-04-25 13:01:31 +08:00
Jason
30e7913981 修复结束时inpaint_area报错 2025-04-25 13:01:26 +08:00
Jason
6fc6d35584 主界面显示版本号, 方便定位问题 2025-04-25 13:01:09 +08:00
Jason
87d8d9d3d7 适配torch 2.8.0 nightly build 2025-04-25 13:00:58 +08:00
Jason
3770ccdcfd 改用PaddleOCR, 跟随主线更新 2025-04-25 13:00:30 +08:00
Jason
29873c33ea 由于PySimpleGUI作者故意移除免费的旧版本,改用PySimpleGUI-4-foss 2025-04-25 13:00:19 +08:00
天涯古巷
196a1a8e7b Merge pull request #150 from YaoFANGUK/revert-130-main
Revert "由于PySimpleGUI作者故意移除免费的旧版本,改用PySimpleGUI-4-foss"
2025-04-25 11:03:29 +08:00
天涯古巷
53baf28326 Revert "由于PySimpleGUI作者故意移除免费的旧版本,改用PySimpleGUI-4-foss" 2025-04-25 11:03:16 +08:00
7 changed files with 223 additions and 210 deletions

View File

@@ -7,7 +7,23 @@ on:
workflow_dispatch:
jobs:
check-secrets:
runs-on: ubuntu-latest
outputs:
has_secrets: ${{ steps.check.outputs.has_secrets }}
steps:
- id: check
run: |
if [[ -n "${{ secrets.DOCKERHUB_USERNAME }}" && -n "${{ secrets.DOCKERHUB_TOKEN }}" ]]; then
echo "has_secrets=true" >> $GITHUB_OUTPUT
else
echo "has_secrets=false" >> $GITHUB_OUTPUT
echo "未设置 Docker Hub 凭据,将跳过整个 Action"
fi
build-and-push:
needs: check-secrets
if: needs.check-secrets.outputs.has_secrets == 'true'
runs-on: ubuntu-latest
strategy:
matrix:
@@ -29,17 +45,11 @@ jobs:
cat /proc/cpuinfo | grep 'model name'
ulimit -a
- name: Maximize build space
uses: easimon/maximize-build-space@master
with:
swap-size-mb: 512
temp-reserve-mb: 1024
root-reserve-mb: 2048
remove-dotnet: 'true'
remove-android: 'true'
remove-haskell: 'true'
remove-codeql: 'true'
- name: Free disk space
run: |
sudo rm -rf /usr/share/dotnet /usr/local/lib/android
df -h
- name: 检出代码
uses: actions/checkout@v4
@@ -64,7 +74,7 @@ jobs:
id: meta
uses: docker/metadata-action@v4
with:
images: eritpchy/video-subtitle-remover
images: ${{ secrets.DOCKERHUB_USERNAME }}/video-subtitle-remover
tags: |
type=raw,value=${{ env.VERSION }}-${{ matrix.type }}${{ matrix.type == 'cuda' && matrix.version || '' }}
@@ -84,4 +94,4 @@ jobs:
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
repository: eritpchy/video-subtitle-remover
repository: ${{ secrets.DOCKERHUB_USERNAME }}/video-subtitle-remover

View File

@@ -60,7 +60,8 @@ jobs:
uses: mxschmitt/action-tmate@v3
- run: |
python backend/tools/makedist.py --cuda 11.8 && \
mv ../vsr_out ./vsr_out
mv ../vsr_out ./vsr_out && \
cp ./vsr_out/Debug/Debug-进入虚拟环境.cmd ./vsr_out/Release/
env:
QPT_Action: "True"
shell: bash
@@ -88,6 +89,6 @@ jobs:
prerelease: true
tag_name: ${{ env.VERSION }}
target_commitish: ${{ github.sha }}
name: 硬字幕提取器 ${{ env.VERSION }}
name: 硬字幕去除v${{ env.VERSION }}
files: |
vsr_out/Release/vsr-v${{ env.VERSION }}-windows-nvidia-cuda-11.8.7z*

View File

@@ -60,7 +60,8 @@ jobs:
uses: mxschmitt/action-tmate@v3
- run: |
python backend/tools/makedist.py --cuda 12.6 && \
mv ../vsr_out ./vsr_out
mv ../vsr_out ./vsr_out && \
cp ./vsr_out/Debug/Debug-进入虚拟环境.cmd ./vsr_out/Release/
env:
QPT_Action: "True"
shell: bash
@@ -88,6 +89,6 @@ jobs:
prerelease: true
tag_name: ${{ env.VERSION }}
target_commitish: ${{ github.sha }}
name: 硬字幕提取器 ${{ env.VERSION }}
name: 硬字幕去除v${{ env.VERSION }}
files: |
vsr_out/Release/vsr-v${{ env.VERSION }}-windows-nvidia-cuda-12.6.7z*

View File

@@ -60,7 +60,8 @@ jobs:
uses: mxschmitt/action-tmate@v3
- run: |
python backend/tools/makedist.py --cuda 12.8 && \
mv ../vsr_out ./vsr_out
mv ../vsr_out ./vsr_out && \
cp ./vsr_out/Debug/Debug-进入虚拟环境.cmd ./vsr_out/Release/
env:
QPT_Action: "True"
shell: bash
@@ -88,6 +89,6 @@ jobs:
prerelease: true
tag_name: ${{ env.VERSION }}
target_commitish: ${{ github.sha }}
name: 硬字幕提取器 ${{ env.VERSION }}
name: 硬字幕去除v${{ env.VERSION }}
files: |
vsr_out/Release/vsr-v${{ env.VERSION }}-windows-nvidia-cuda-12.8.7z*

View File

@@ -60,7 +60,8 @@ jobs:
uses: mxschmitt/action-tmate@v3
- run: |
python backend/tools/makedist.py --directml && \
mv ../vsr_out ./vsr_out
mv ../vsr_out ./vsr_out && \
cp ./vsr_out/Debug/Debug-进入虚拟环境.cmd ./vsr_out/Release/
env:
QPT_Action: "True"
shell: bash
@@ -88,6 +89,6 @@ jobs:
prerelease: true
tag_name: ${{ env.VERSION }}
target_commitish: ${{ github.sha }}
name: 硬字幕提取器 ${{ env.VERSION }}
name: 硬字幕去除v${{ env.VERSION }}
files: |
vsr_out/Release/vsr-v${{ env.VERSION }}-windows-directml.7z*

189
README.md
View File

@@ -3,7 +3,7 @@
## 项目简介
![License](https://img.shields.io/badge/License-Apache%202-red.svg)
![python version](https://img.shields.io/badge/Python-3.8+-blue.svg)
![python version](https://img.shields.io/badge/Python-3.11+-blue.svg)
![support os](https://img.shields.io/badge/OS-Windows/macOS/Linux-green.svg)
Video-subtitle-remover (VSR) 是一款基于AI技术将视频中的硬字幕去除的软件。
@@ -18,8 +18,8 @@ Video-subtitle-remover (VSR) 是一款基于AI技术将视频中的硬字幕
**使用说明:**
- 有使用问题请加群讨论QQ群806152575已满、816881808
- 直接下载压缩包解压运行如果不能运行再按照下面的教程尝试源码安装conda环境运行
- 有使用问题请加群讨论QQ群210150985已满806152575已满、816881808已满、295894827
- 直接下载压缩包解压运行如果不能运行再按照下面的教程尝试源码安装conda环境运行
**下载地址:**
@@ -27,23 +27,35 @@ Windows GPU版本v1.1.0GPU
- 百度网盘: <a href="https://pan.baidu.com/s/1zR6CjRztmOGBbOkqK8R1Ng?pwd=vsr1">vsr_windows_gpu_v1.1.0.zip</a> 提取码:**vsr1**
- Google Drive: <a href="https://drive.google.com/drive/folders/1NRgLNoHHOmdO4GxLhkPbHsYfMOB_3Elr?usp=sharing">vsr_windows_gpu_v1.1.0.zip</a>
- Google Drive: <a href="https://drive.google.com/drive/folders/1NRgLNoHHOmdO4GxLhkPbHsYfMOB_3Elr?usp=sharing">vsr_windows_gpu_v1.1.0.zip</a>
> 仅供具有Nvidia显卡的用户使用(AMD的显卡不行)
**预构建包对比说明**
| 预构建包名 | Python | Paddle | Torch | 环境 | 支持的计算能力范围|
|---------------|------------|--------------|--------------|-----------------------------|----------|
| `vsr-windows-directml.7z` | 3.12 | 3.0.0 | 2.4.1 | Windows 非Nvidia显卡 | 通用 |
| `vsr-windows-nvidia-cuda-11.8.7z` | 3.12 | 3.0.0 | 2.7.0 | CUDA 11.8 | 3.5 8.9 |
| `vsr-windows-nvidia-cuda-12.6.7z` | 3.12 | 3.0.0 | 2.7.0 | CUDA 12.6 | 5.0 8.9 |
| `vsr-windows-nvidia-cuda-12.8.7z` | 3.12 | 3.0.0 | 2.7.0 | CUDA 12.8 | 5.0 9.0+ |
> NVIDIA官方提供了各GPU型号的计算能力列表您可以参考链接: [CUDA GPUs](https://developer.nvidia.com/cuda-gpus) 查看你的GPU适合哪个CUDA版本
**Docker版本**
```shell
# Nvidia 10 20 30系显卡
docker run -it --rm --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda11.8
docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda11.8
# Nvidia 40系显卡
docker run -it --rm --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda12.6
docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda12.6
# Nvidia 50系显卡
docker run -it --rm --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda12.8
docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda12.8
# AMD / Intel 独显 集显
docker run -it --rm --gpus all eritpchy/video-subtitle-remover:1.1.1-directml
docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-directml
# 演示视频, 输入
/vsr/test/test.mp4
docker cp vsr:/vsr/test/test_no_sub.mp4 ./
```
## 演示
@@ -58,114 +70,98 @@ Windows GPU版本v1.1.0GPU
## 源码使用说明
> **无Nvidia显卡请勿使用本项目**,最低配置:
>
> **GPU**GTX 1060或以上显卡
>
> CPU: 支持AVX指令集
#### 1. 下载安装Miniconda
#### 1. 安装 Python
- Windows: <a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-Windows-x86_64.exe">Miniconda3-py38_4.11.0-Windows-x86_64.exe</a>
请确保您已经安装了 Python 3.12+。
- Linux: <a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-Linux-x86_64.sh">Miniconda3-py38_4.11.0-Linux-x86_64.sh</a>
- Windows 用户可以前往 [Python 官网](https://www.python.org/downloads/windows/) 下载并安装 Python。
- MacOS 用户可以使用 Homebrew 安装:
```shell
brew install python@3.12
```
- Linux 用户可以使用包管理器安装,例如 Ubuntu/Debian
```shell
sudo apt update && sudo apt install python3.12 python3.12-venv python3.12-dev
```
#### 2. 创建并激活虚机环境
#### 2. 安装依赖文件
1切换到源码所在目录
请使用虚拟环境来管理项目依赖,避免与系统环境冲突。
1创建虚拟环境并激活
```shell
python -m venv videoEnv
```
- Windows
```shell
videoEnv\\Scripts\\activate
```
- MacOS/Linux
```shell
source videoEnv/bin/activate
```
#### 3. 创建并激活项目目录
切换到源码所在目录:
```shell
cd <源码所在目录>
```
> 例如:如果的源代码放在D盘的tools文件下并且源代码的文件夹名为video-subtitle-remover输入 ```cd D:/tools/video-subtitle-remover-main```
> 例如:如果的源代码放在 D 盘的 tools 文件下,并且源代码的文件夹名为 video-subtitle-remover输入
> ```shell
> cd D:/tools/video-subtitle-remover-main
> ```
2创建激活conda环境
```shell
conda create -n videoEnv python=3.8
```
#### 4. 安装合适的运行环境
```shell
conda activate videoEnv
```
本项目支持 CUDANVIDIA显卡加速和 DirectMLAMD、Intel等GPU/APU加速两种运行模式。
#### 3. 安装依赖文件
##### (1) CUDANVIDIA 显卡用户)
请确保你已经安装 python 3.8+使用conda创建项目虚拟环境并激活环境 (建议创建虚拟环境运行,以免后续出现问题)
> 请确保您的 NVIDIA 显卡驱动支持所选 CUDA 版本。
- 安装CUDA和cuDNN
- 推荐 CUDA 11.8,对应 cuDNN 8.6.0。
<details>
<summary>Linux用户</summary>
<h5>(1) 下载CUDA 11.7</h5>
<pre><code>wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run</code></pre>
<h5>(2) 安装CUDA 11.7</h5>
<pre><code>sudo sh cuda_11.7.0_515.43.04_linux.run</code></pre>
<p>1. 输入accept</p>
<img src="https://i.328888.xyz/2023/03/31/iwVoeH.png" width="500" alt="">
<p>2. 选中CUDA Toolkit 11.7如果你没有安装nvidia驱动则选中Driver如果你已经安装了nvidia驱动请不要选中driver之后选中install回车</p>
<img src="https://i.328888.xyz/2023/03/31/iwVThJ.png" width="500" alt="">
<p>3. 添加环境变量</p>
<p>在 ~/.bashrc 加入以下内容</p>
<pre><code># CUDA
export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}</code></pre>
<p>使其生效</p>
<pre><code>source ~/.bashrc</code></pre>
<h5>(3) 下载cuDNN 8.4.1</h5>
<p>国内:<a href="https://pan.baidu.com/s/1Gd_pSVzWfX1G7zCuqz6YYA">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a> 提取码57mg</p>
<p>国外:<a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a></p>
<h5>(4) 安装cuDNN 8.4.1</h5>
<pre><code> tar -xf cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz
mv cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive cuda
sudo cp ./cuda/include/* /usr/local/cuda-11.7/include/
sudo cp ./cuda/lib/* /usr/local/cuda-11.7/lib64/
sudo chmod a+r /usr/local/cuda-11.7/lib64/*
sudo chmod a+r /usr/local/cuda-11.7/include/*</code></pre>
</details>
- 安装 CUDA
- Windows[CUDA 11.8 下载](https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe)
- Linux
```shell
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
```
- MacOS 不支持 CUDA。
<details>
<summary>Windows用户</summary>
<h5>(1) 下载CUDA 11.7</h5>
<a href="https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_516.01_windows.exe">cuda_11.7.0_516.01_windows.exe</a>
<h5>(2) 安装CUDA 11.7</h5>
<h5>(3) 下载cuDNN v8.4.0 (April 1st, 2022), for CUDA 11.x</h5>
<p><a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip">cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip</a></p>
<h5>(4) 安装cuDNN 8.4.0</h5>
<p>
将cuDNN解压后的cuda文件夹中的bin, include, lib目录下的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\对应目录下
</p>
</details>
- 安装 cuDNNCUDA 11.8 对应 cuDNN 8.6.0
- [Windows cuDNN 8.6.0 下载](https://developer.download.nvidia.cn/compute/redist/cudnn/v8.6.0/local_installers/11.8/cudnn-windows-x86_64-8.6.0.163_cuda11-archive.zip)
- [Linux cuDNN 8.6.0 下载](https://developer.download.nvidia.cn/compute/redist/cudnn/v8.6.0/local_installers/11.8/cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz)
- 安装方法请参考 NVIDIA 官方文档。
- 安装GPU版本Paddlepaddle:
- windows:
```shell
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
```
- Linux:
```shell
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
```
- 安装GPU版本Pytorch:
- 安装 PaddlePaddle GPU 版本CUDA 11.8
```shell
conda install pytorch==2.0.1 torchvision==0.15.2 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
```
或者使用
- 安装 Torch GPU 版本CUDA 11.8
```shell
pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
pip install torch==2.7.0 torchvision==0.22.0 --index-url https://download.pytorch.org/whl/cu118
```
- 安装其他依赖:
- 安装其他依赖
```shell
pip install -r requirements.txt
```
##### (2) DirectMLAMD、Intel等GPU/APU加速卡用户
- 适用于 Windows 设备的 AMD/NVIDIA/Intel GPU。
- 安装 ONNX Runtime DirectML 版本:
```shell
pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
pip install -r requirements.txt
pip install torch_directml==0.2.5.dev240914
```
#### 4. 运行程序
@@ -228,13 +224,6 @@ LAMA_SUPER_FAST = False # 保证效果
解决方案升级7-zip解压程序到最新版本
5. 4090使用cuda 11.7跑不起来
解决方案改用cuda 11.8
```shell
pip install torch==2.1.0 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
```
## 赞助
@@ -251,8 +240,10 @@ pip install torch==2.1.0 torchvision==0.15.2 --index-url https://download.pytorc
| 无痕 | 100.00 RMB | 金牌赞助席位 |
| wr | 100.00 RMB | 金牌赞助席位 |
| 陈 | 100.00 RMB | 金牌赞助席位 |
| lyons | 100.00 RMB | 金牌赞助席位 |
| TalkLuv | 50.00 RMB | 银牌赞助席位 |
| 陈凯 | 50.00 RMB | 银牌赞助席位 |
| Freeman | 30.00 RMB | 银牌赞助席位 |
| Tshuang | 20.00 RMB | 银牌赞助席位 |
| 很奇异 | 15.00 RMB | 银牌赞助席位 |
| 郭鑫 | 12.00 RMB | 银牌赞助席位 |

View File

@@ -3,7 +3,7 @@
## Project Introduction
![License](https://img.shields.io/badge/License-Apache%202-red.svg)
![python version](https://img.shields.io/badge/Python-3.8+-blue.svg)
![python version](https://img.shields.io/badge/Python-3.11+-blue.svg)
![support os](https://img.shields.io/badge/OS-Windows/macOS/Linux-green.svg)
Video-subtitle-remover (VSR) is an AI-based software that removes hardcoded subtitles from videos. It mainly implements the following functionalities:
@@ -26,7 +26,36 @@ Windows GPU Version v1.1.0 (GPU):
- Google Drive: <a href="https://drive.google.com/drive/folders/1NRgLNoHHOmdO4GxLhkPbHsYfMOB_3Elr?usp=sharing">vsr_windows_gpu_v1.1.0.zip</a>
> For use only by users with Nvidia graphics cards (AMD graphics cards are not supported).
**Pre-built Package Comparison**:
| Pre-built Package Name | Python | Paddle | Torch | Environment | Supported Compute Capability Range |
|----------------------------------|--------|--------|--------|-----------------------------------|------------------------------------|
| `vse-windows-directml.7z` | 3.12 | 3.0.0 | 2.4.1 | Windows without Nvidia GPU | Universal |
| `vse-windows-nvidia-cuda-11.8.7z`| 3.12 | 3.0.0 | 2.7.0 | CUDA 11.8 | 3.5 8.9 |
| `vse-windows-nvidia-cuda-12.6.7z`| 3.12 | 3.0.0 | 2.7.0 | CUDA 12.6 | 5.0 8.9 |
| `vse-windows-nvidia-cuda-12.8.7z`| 3.12 | 3.0.0 | 2.7.0 | CUDA 12.8 | 5.0 9.0+ |
> NVIDIA provides a list of supported compute capabilities for each GPU model. You can refer to the following link: [CUDA GPUs](https://developer.nvidia.com/cuda-gpus) to check which CUDA version is compatible with your GPU.
**Docker Versions:**
```shell
# Nvidia 10, 20, 30 Series Graphics Cards
docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda11.8
# Nvidia 40 Series Graphics Cards
docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda12.6
# Nvidia 50 Series Graphics Cards
docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda12.8
# AMD / Intel Dedicated or Integrated Graphics
docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-directml
# Demo video, input
/vsr/test/test.mp4
docker cp vsr:/vsr/test/test_no_sub.mp4 ./
```
## Demonstration
@@ -40,117 +69,98 @@ Windows GPU Version v1.1.0 (GPU):
## Source Code Usage Instructions
> **Do not use this project without an Nvidia graphics card**. The minimum requirements are:
>
> **GPU**: GTX 1060 or higher graphics card
>
> CPU: Supports AVX instruction set
#### 1. Install Python
#### 1. Download and install Miniconda
Please ensure that you have installed Python 3.12+.
- Windows: <a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-Windows-x86_64.exe">Miniconda3-py38_4.11.0-Windows-x86_64.exe</a>
- Windows users can go to the [Python official website](https://www.python.org/downloads/windows/) to download and install Python.
- MacOS users can install using Homebrew:
```shell
brew install python@3.12
```
- Linux users can install via the package manager, such as on Ubuntu/Debian:
```shell
sudo apt update && sudo apt install python3.12 python3.12-venv python3.12-dev
```
- Linux: <a href="https://repo.anaconda.com/miniconda/Miniconda3-py38_4.11.0-Linux-x86_64.sh">Miniconda3-py38_4.11.0-Linux-x86_64.sh</a>
#### 2. Install Dependencies
#### 2. Create and activate a virtual environment
It is recommended to use a virtual environment to manage project dependencies to avoid conflicts with the system environment.
(1) Switch to the source code directory:
(1) Create and activate the virtual environment:
```shell
python -m venv videoEnv
```
- Windows:
```shell
videoEnv\\Scripts\\activate
```
- MacOS/Linux:
```shell
source videoEnv/bin/activate
```
#### 3. Create and Activate Project Directory
Change to the directory where your source code is located:
```shell
cd <source_code_directory>
```
> For example, if your source code is in the `tools` folder on the D drive and the folder name is `video-subtitle-remover`, use:
> ```shell
> cd D:/tools/video-subtitle-remover-main
> ```
> For example, if your source code is in the `tools` folder on drive D, and the source code folder name is `video-subtitle-remover`, enter `cd D:/tools/video-subtitle-remover-main`.
#### 4. Install the Appropriate Runtime Environment
(2) Create and activate the conda environment:
This project supports two runtime modes: CUDA (NVIDIA GPU acceleration) and DirectML (AMD, Intel, and other GPUs/APUs).
```shell
conda create -n videoEnv python=3.8
```
##### (1) CUDA (For NVIDIA GPU users)
```shell
conda activate videoEnv
```
> Make sure your NVIDIA GPU driver supports the selected CUDA version.
#### 3. Install dependencies
Please make sure you have already installed Python 3.8+, use conda to create a project virtual environment and activate the environment (it is recommended to create a virtual environment to run to avoid subsequent problems).
- Install **CUDA** and **cuDNN**
<details>
<summary>Linux</summary>
<h5>(1) Download CUDA 11.7</h5>
<pre><code>wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run</code></pre>
<h5>(2) Install CUDA 11.7</h5>
<pre><code>sudo sh cuda_11.7.0_515.43.04_linux.run</code></pre>
<p>1. Input accept</p>
<img src="https://i.328888.xyz/2023/03/31/iwVoeH.png" width="500" alt="">
<p>2. make sure CUDA Toolkit 11.7 is chosen (If you have already installed driver, do not select Driver)</p>
<img src="https://i.328888.xyz/2023/03/31/iwVThJ.png" width="500" alt="">
<p>3. Add environment variables</p>
<p>add the following content in <strong>~/.bashrc</strong></p>
<pre><code># CUDA
export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}</code></pre>
<p>Make sure it works</p>
<pre><code>source ~/.bashrc</code></pre>
<h5>(3) Download cuDNN 8.4.1</h5>
<p><a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a></p>
<h5>(4) Install cuDNN 8.4.1</h5>
<pre><code> tar -xf cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz
mv cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive cuda
sudo cp ./cuda/include/* /usr/local/cuda-11.7/include/
sudo cp ./cuda/lib/* /usr/local/cuda-11.7/lib64/
sudo chmod a+r /usr/local/cuda-11.7/lib64/*
sudo chmod a+r /usr/local/cuda-11.7/include/*</code></pre>
</details>
<details>
<summary>Windows</summary>
<h5>(1) Download CUDA 11.7</h5>
<a href="https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_516.01_windows.exe">cuda_11.7.0_516.01_windows.exe</a>
<h5>(2) Install CUDA 11.7</h5>
<h5>(3) Download cuDNN 8.4.0</h5>
<p><a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip">cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip</a></p>
<h5>(4) Install cuDNN 8.4.0</h5>
<p>
unzip "cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip", then move all files in "bin, include, lib" in cuda
directory to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\
</p>
</details>
- Install GPU version of Paddlepaddle:
- windows:
```shell
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
```
- Recommended CUDA 11.8, corresponding to cuDNN 8.6.0.
- Install CUDA:
- Windows: [Download CUDA 11.8](https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe)
- Linux:
```shell
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
```
- CUDA is not supported on MacOS.
```shell
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
```
- Install cuDNN (CUDA 11.8 corresponds to cuDNN 8.6.0):
- [Windows cuDNN 8.6.0 Download](https://developer.download.nvidia.cn/compute/redist/cudnn/v8.6.0/local_installers/11.8/cudnn-windows-x86_64-8.6.0.163_cuda11-archive.zip)
- [Linux cuDNN 8.6.0 Download](https://developer.download.nvidia.cn/compute/redist/cudnn/v8.6.0/local_installers/11.8/cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz)
- Follow the installation guide in the NVIDIA official documentation.
- Install GPU version of Pytorch:
```shell
conda install pytorch==2.1.0 torchvision==0.16.0 pytorch-cuda=11.8 -c pytorch -c nvidia
- Install PaddlePaddle GPU version (CUDA 11.8):
```shell
pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
```
or use
```shell
pip install torch==2.1.0 torchvision==0.16.0 --index-url https://download.pytorch.org/whl/cu118
- Install Torch GPU version (CUDA 11.8):
```shell
pip install torch==2.7.0 torchvision==0.22.0 --index-url https://download.pytorch.org/whl/cu118
```
- Install other dependencies:
```shell
pip install -r requirements.txt
```
##### (2) DirectML (For AMD, Intel, and other GPU/APU users)
- Suitable for Windows devices with AMD/NVIDIA/Intel GPUs.
- Install ONNX Runtime DirectML version:
```shell
pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
pip install -r requirements.txt
pip install -r requirements_directml.txt
```
#### 4. Run the program
@@ -215,6 +225,4 @@ Solution: https://zhuanlan.zhihu.com/p/260034241
Solution: Upgrade the 7-zip extraction program to the latest version.
```shell
pip install torch==2.1.0 torchvision==0.16.0 --index-url https://download.pytorch.org/whl/cu118
```