mirror of
https://github.com/YaoFANGUK/video-subtitle-remover.git
synced 2026-02-03 20:24:43 +08:00
修复结束时inpaint_area报错
This commit is contained in:
@@ -253,70 +253,106 @@ class STTNVideoInpaint:
|
||||
self.clip_gap = clip_gap
|
||||
|
||||
def __call__(self, input_mask=None, input_sub_remover=None, tbar=None):
|
||||
# 读取视频帧信息
|
||||
reader, frame_info = self.read_frame_info_from_video()
|
||||
if input_sub_remover is not None:
|
||||
writer = input_sub_remover.video_writer
|
||||
else:
|
||||
# 创建视频写入对象,用于输出修复后的视频
|
||||
writer = cv2.VideoWriter(self.video_out_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_info['fps'], (frame_info['W_ori'], frame_info['H_ori']))
|
||||
# 计算需要迭代修复视频的次数
|
||||
rec_time = frame_info['len'] // self.clip_gap if frame_info['len'] % self.clip_gap == 0 else frame_info['len'] // self.clip_gap + 1
|
||||
# 计算分割高度,用于确定修复区域的大小
|
||||
split_h = int(frame_info['W_ori'] * 3 / 16)
|
||||
if input_mask is None:
|
||||
# 读取掩码
|
||||
mask = self.sttn_inpaint.read_mask(self.mask_path)
|
||||
else:
|
||||
_, mask = cv2.threshold(input_mask, 127, 1, cv2.THRESH_BINARY)
|
||||
mask = mask[:, :, None]
|
||||
# 得到修复区域位置
|
||||
inpaint_area = self.sttn_inpaint.get_inpaint_area_by_mask(frame_info['H_ori'], split_h, mask)
|
||||
# 遍历每一次的迭代次数
|
||||
for i in range(rec_time):
|
||||
start_f = i * self.clip_gap # 起始帧位置
|
||||
end_f = min((i + 1) * self.clip_gap, frame_info['len']) # 结束帧位置
|
||||
print('Processing:', start_f + 1, '-', end_f, ' / Total:', frame_info['len'])
|
||||
frames_hr = [] # 高分辨率帧列表
|
||||
frames = {} # 帧字典,用于存储裁剪后的图像
|
||||
comps = {} # 组合字典,用于存储修复后的图像
|
||||
# 初始化帧字典
|
||||
for k in range(len(inpaint_area)):
|
||||
frames[k] = []
|
||||
# 读取和修复高分辨率帧
|
||||
for j in range(start_f, end_f):
|
||||
success, image = reader.read()
|
||||
frames_hr.append(image)
|
||||
reader = None
|
||||
writer = None
|
||||
try:
|
||||
# 读取视频帧信息
|
||||
reader, frame_info = self.read_frame_info_from_video()
|
||||
if input_sub_remover is not None:
|
||||
writer = input_sub_remover.video_writer
|
||||
else:
|
||||
# 创建视频写入对象,用于输出修复后的视频
|
||||
writer = cv2.VideoWriter(self.video_out_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_info['fps'], (frame_info['W_ori'], frame_info['H_ori']))
|
||||
|
||||
# 计算需要迭代修复视频的次数
|
||||
rec_time = frame_info['len'] // self.clip_gap if frame_info['len'] % self.clip_gap == 0 else frame_info['len'] // self.clip_gap + 1
|
||||
# 计算分割高度,用于确定修复区域的大小
|
||||
split_h = int(frame_info['W_ori'] * 3 / 16)
|
||||
|
||||
if input_mask is None:
|
||||
# 读取掩码
|
||||
mask = self.sttn_inpaint.read_mask(self.mask_path)
|
||||
else:
|
||||
_, mask = cv2.threshold(input_mask, 127, 1, cv2.THRESH_BINARY)
|
||||
mask = mask[:, :, None]
|
||||
|
||||
# 得到修复区域位置
|
||||
inpaint_area = self.sttn_inpaint.get_inpaint_area_by_mask(frame_info['H_ori'], split_h, mask)
|
||||
|
||||
# 遍历每一次的迭代次数
|
||||
for i in range(rec_time):
|
||||
start_f = i * self.clip_gap # 起始帧位置
|
||||
end_f = min((i + 1) * self.clip_gap, frame_info['len']) # 结束帧位置
|
||||
print('Processing:', start_f + 1, '-', end_f, ' / Total:', frame_info['len'])
|
||||
|
||||
frames_hr = [] # 高分辨率帧列表
|
||||
frames = {} # 帧字典,用于存储裁剪后的图像
|
||||
comps = {} # 组合字典,用于存储修复后的图像
|
||||
|
||||
# 初始化帧字典
|
||||
for k in range(len(inpaint_area)):
|
||||
# 裁剪、缩放并添加到帧字典
|
||||
image_crop = image[inpaint_area[k][0]:inpaint_area[k][1], :, :]
|
||||
image_resize = cv2.resize(image_crop, (self.sttn_inpaint.model_input_width, self.sttn_inpaint.model_input_height))
|
||||
frames[k].append(image_resize)
|
||||
# 对每个修复区域运行修复
|
||||
for k in range(len(inpaint_area)):
|
||||
comps[k] = self.sttn_inpaint.inpaint(frames[k])
|
||||
# 如果有要修复的区域
|
||||
if inpaint_area is not []:
|
||||
for j in range(end_f - start_f):
|
||||
if input_sub_remover is not None and input_sub_remover.gui_mode:
|
||||
original_frame = copy.deepcopy(frames_hr[j])
|
||||
else:
|
||||
original_frame = None
|
||||
frame = frames_hr[j]
|
||||
frames[k] = []
|
||||
|
||||
# 读取和修复高分辨率帧
|
||||
valid_frames_count = 0
|
||||
for j in range(start_f, end_f):
|
||||
success, image = reader.read()
|
||||
if not success:
|
||||
print(f"Warning: Failed to read frame {j}.")
|
||||
break
|
||||
|
||||
frames_hr.append(image)
|
||||
valid_frames_count += 1
|
||||
|
||||
for k in range(len(inpaint_area)):
|
||||
# 将修复的图像重新扩展到原始分辨率,并融合到原始帧
|
||||
comp = cv2.resize(comps[k][j], (frame_info['W_ori'], split_h))
|
||||
comp = cv2.cvtColor(np.array(comp).astype(np.uint8), cv2.COLOR_BGR2RGB)
|
||||
mask_area = mask[inpaint_area[k][0]:inpaint_area[k][1], :]
|
||||
frame[inpaint_area[k][0]:inpaint_area[k][1], :, :] = mask_area * comp + (1 - mask_area) * frame[inpaint_area[k][0]:inpaint_area[k][1], :, :]
|
||||
writer.write(frame)
|
||||
if input_sub_remover is not None:
|
||||
if tbar is not None:
|
||||
input_sub_remover.update_progress(tbar, increment=1)
|
||||
if original_frame is not None and input_sub_remover.gui_mode:
|
||||
input_sub_remover.preview_frame = cv2.hconcat([original_frame, frame])
|
||||
# 释放视频写入对象
|
||||
writer.release()
|
||||
# 裁剪、缩放并添加到帧字典
|
||||
image_crop = image[inpaint_area[k][0]:inpaint_area[k][1], :, :]
|
||||
image_resize = cv2.resize(image_crop, (self.sttn_inpaint.model_input_width, self.sttn_inpaint.model_input_height))
|
||||
frames[k].append(image_resize)
|
||||
|
||||
# 如果没有读取到有效帧,则跳过当前迭代
|
||||
if valid_frames_count == 0:
|
||||
print(f"Warning: No valid frames found in range {start_f+1}-{end_f}. Skipping this segment.")
|
||||
continue
|
||||
|
||||
# 对每个修复区域运行修复
|
||||
for k in range(len(inpaint_area)):
|
||||
if len(frames[k]) > 0: # 确保有帧可以处理
|
||||
comps[k] = self.sttn_inpaint.inpaint(frames[k])
|
||||
else:
|
||||
comps[k] = []
|
||||
|
||||
# 如果有要修复的区域
|
||||
if inpaint_area and valid_frames_count > 0:
|
||||
for j in range(valid_frames_count):
|
||||
if input_sub_remover is not None and input_sub_remover.gui_mode:
|
||||
original_frame = copy.deepcopy(frames_hr[j])
|
||||
else:
|
||||
original_frame = None
|
||||
|
||||
frame = frames_hr[j]
|
||||
|
||||
for k in range(len(inpaint_area)):
|
||||
if j < len(comps[k]): # 确保索引有效
|
||||
# 将修复的图像重新扩展到原始分辨率,并融合到原始帧
|
||||
comp = cv2.resize(comps[k][j], (frame_info['W_ori'], split_h))
|
||||
comp = cv2.cvtColor(np.array(comp).astype(np.uint8), cv2.COLOR_BGR2RGB)
|
||||
mask_area = mask[inpaint_area[k][0]:inpaint_area[k][1], :]
|
||||
frame[inpaint_area[k][0]:inpaint_area[k][1], :, :] = mask_area * comp + (1 - mask_area) * frame[inpaint_area[k][0]:inpaint_area[k][1], :, :]
|
||||
|
||||
writer.write(frame)
|
||||
|
||||
if input_sub_remover is not None:
|
||||
if tbar is not None:
|
||||
input_sub_remover.update_progress(tbar, increment=1)
|
||||
if original_frame is not None and input_sub_remover.gui_mode:
|
||||
input_sub_remover.preview_frame = cv2.hconcat([original_frame, frame])
|
||||
except Exception as e:
|
||||
print(f"Error during video processing: {str(e)}")
|
||||
# 不抛出异常,允许程序继续执行
|
||||
finally:
|
||||
if writer:
|
||||
writer.release()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
Reference in New Issue
Block a user