新增视频inpaint方法

This commit is contained in:
YaoFANGUK
2023-12-26 10:10:43 +08:00
parent 9aeb8f8860
commit 41a95dac0f
3 changed files with 107 additions and 33 deletions

View File

@@ -35,10 +35,12 @@ THRESHOLD_HEIGHT_DIFFERENCE = 20
MAX_PROCESS_NUM = 70
# 【根据自己内存大小设置应该大于等于MAX_PROCESS_NUM】
MAX_LOAD_NUM = 200
# 是否开启精细模式开启精细模式将消耗大量GPU显存如果您的显卡显存较少建议设置为False
ACCURATE_MODE = True
# 是否开启快速模型不保证inpaint效果
FAST_MODE = False
# 模式列表请根据自己需求选择inpiant模式
# ACCURATE模式将消耗大量GPU显存如果您的显卡显存较少建议设置为NORMAL
MODE_LIST = ['FAST', 'NORMAL', 'ACCURATE']
MODE = 'NORMAL'
# 如果仅需要去除文字区域则使用FAST
SUPER_FAST = False
# ×××××××××××××××××××× [可以改] start ××××××××××××××××××××
@@ -73,8 +75,6 @@ if 'ffmpeg.exe' not in os.listdir(os.path.join(BASE_DIR, '', 'ffmpeg', 'win_x64'
os.chmod(FFMPEG_PATH, stat.S_IRWXU+stat.S_IRWXG+stat.S_IRWXO)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
# 如果开启了快速模式则强制关闭ACCURATE_MODE
if FAST_MODE:
ACCURATE_MODE = False
if SUPER_FAST:
MODE = 'FAST'
# ×××××××××××××××××××× [不要改] end ××××××××××××××××××××

View File

@@ -1,4 +1,7 @@
import copy
import os
import time
import cv2
import numpy as np
import torch
@@ -196,25 +199,98 @@ class STTNInpaint:
return inpaint_area # 返回绘画区域列表
class STTNVideoInpaint:
def read_frame_info_from_video(self):
# 使用opencv读取视频
reader = cv2.VideoCapture(self.video_path)
# 获取视频的宽度, 高度, 帧率和帧数信息并存储在frame_info字典中
frame_info = {
'W_ori': int(reader.get(cv2.CAP_PROP_FRAME_WIDTH) + 0.5), # 视频的原始宽度
'H_ori': int(reader.get(cv2.CAP_PROP_FRAME_HEIGHT) + 0.5), # 视频的原始高度
'fps': reader.get(cv2.CAP_PROP_FPS), # 视频的帧率
'len': int(reader.get(cv2.CAP_PROP_FRAME_COUNT) + 0.5) # 视频的总帧数
}
# 创建视频写入对象,用于输出修复后的视频
writer = cv2.VideoWriter(
self.video_out_path,
cv2.VideoWriter_fourcc(*"mp4v"),
frame_info['fps'],
(frame_info['W_ori'], frame_info['H_ori'])
)
# 返回视频读取对象、帧信息和视频写入对象
return reader, frame_info, writer
def __init__(self, video_path, mask_path):
# STTNInpaint视频修复实例初始化
self.sttn_inpaint = STTNInpaint()
# 视频和掩码路径
self.video_path = video_path
self.mask_path = mask_path
# 设置输出视频文件的路径
self.video_out_path = os.path.join(
os.path.dirname(os.path.abspath(self.video_path)),
f"{os.path.basename(self.video_path).rsplit('.', 1)[0]}_no_sub.mp4"
)
# 配置可在一次处理中加载的最大帧数
self.clip_gap = config.MAX_LOAD_NUM
def __call__(self):
# 记录开始时间
start = time.time()
# 读取视频帧信息
reader, frame_info, writer = self.read_frame_info_from_video()
# 计算需要迭代修复视频的次数
rec_time = frame_info['len'] // self.clip_gap if frame_info['len'] % self.clip_gap == 0 else frame_info['len'] // self.clip_gap + 1
# 计算分割高度,用于确定修复区域的大小
split_h = int(frame_info['W_ori'] * 3 / 16)
# 读取掩码
mask = self.sttn_inpaint.read_mask(self.mask_path)
# 得到修复区域位置
inpaint_area = self.sttn_inpaint.get_inpaint_area_by_mask(frame_info['H_ori'], split_h, mask)
# 遍历每一次的迭代次数
for i in range(rec_time):
start_f = i * self.clip_gap # 起始帧位置
end_f = min((i + 1) * self.clip_gap, frame_info['len']) # 结束帧位置
print('Processing:', start_f + 1, '-', end_f, ' / Total:', frame_info['len'])
print('start frame: ', start_f, 'end frame: ', end_f)
frames_hr = [] # 高分辨率帧列表
frames = {} # 帧字典,用于存储裁剪后的图像
comps = {} # 组合字典,用于存储修复后的图像
# 初始化帧字典
for k in range(len(inpaint_area)):
frames[k] = []
# 读取和修复高分辨率帧
for j in range(start_f, end_f):
success, image = reader.read()
frames_hr.append(image)
for k in range(len(inpaint_area)):
# 裁剪、缩放并添加到帧字典
image_crop = image[inpaint_area[k][0]:inpaint_area[k][1], :, :]
image_resize = cv2.resize(image_crop, (self.sttn_inpaint.model_input_width, self.sttn_inpaint.model_input_height))
frames[k].append(image_resize)
# 对每个修复区域运行修复
for k in range(len(inpaint_area)):
comps[k] = self.sttn_inpaint.inpaint(frames[k])
# 如果有要修复的区域
if inpaint_area is not []:
for j in range(end_f - start_f):
frame = frames_hr[j]
for k in range(len(inpaint_area)):
# 将修复的图像重新扩展到原始分辨率,并融合到原始帧
comp = cv2.resize(comps[k][j], (frame_info['W_ori'], split_h))
comp = cv2.cvtColor(np.array(comp).astype(np.uint8), cv2.COLOR_BGR2RGB)
mask_area = mask[inpaint_area[k][0]:inpaint_area[k][1], :]
frame[inpaint_area[k][0]:inpaint_area[k][1], :, :] = mask_area * comp + (1 - mask_area) * frame[inpaint_area[k][0]:inpaint_area[k][1], :, :]
writer.write(frame)
print(f'video generated at {self.video_out_path}')
print(f'time cost: {time.time() - start}')
# 释放视频写入对象
writer.release()
if __name__ == '__main__':
sttn_inpaint = STTNInpaint()
video_path = '/home/yao/Documents/Project/video-subtitle-remover/local_test/english1.mp4'
mask_path = '/home/yao/Documents/Project/video-subtitle-remover/local_test/english1_mask.png'
video_cap = cv2.VideoCapture(video_path)
mask = sttn_inpaint.read_mask(mask_path)
input_frames = []
index = 0
print('读取视频帧')
while True:
ret, frame = video_cap.read()
if not ret:
break
if index == 200:
break
index += 1
input_frames.append(frame)
print('开始填充')
inpainted_frames = sttn_inpaint(input_frames, mask)
for i,frame in enumerate(inpainted_frames):
cv2.imwrite(f"/home/yao/Documents/Project/video-subtitle-remover/local_test/res/{i}.png", frame)
sttn_video_inpaint = STTNVideoInpaint(video_path, mask_path)
sttn_video_inpaint()

View File

@@ -667,9 +667,7 @@ class SubtitleRemover:
self.update_progress(tbar, increment=len(batch))
# *********************** 批推理方案 end ***********************
def lama_mode(self, sub_list, tbar):
# *********************** 单线程方案 start ***********************
print('use lama mode')
if self.lama_inpaint is None:
self.lama_inpaint = LamaInpaint()
@@ -682,7 +680,7 @@ class SubtitleRemover:
index += 1
if index in sub_list.keys():
mask = create_mask(self.mask_size, sub_list[index])
if config.FAST_MODE:
if config.SUPER_FAST:
frame = cv2.inpaint(frame, mask, 3, cv2.INPAINT_TELEA)
else:
frame = self.lama_inpaint(frame, mask)
@@ -694,7 +692,6 @@ class SubtitleRemover:
tbar.update(1)
self.progress_remover = 100 * float(index) / float(self.frame_count) // 2
self.progress_total = 50 + self.progress_remover
# *********************** 单线程方案 end ***********************
def run(self):
# 记录开始时间
@@ -721,9 +718,10 @@ class SubtitleRemover:
tbar.update(1)
self.progress_total = 100
else:
if config.ACCURATE_MODE:
if config.MODE == 'ACCURATE':
self.propainter_mode(sub_list, continuous_frame_no_list, tbar)
elif config.MODE == 'NORMAL':
self.sttn_mode(sub_list, continuous_frame_no_list, tbar)
# self.propainter_mode(sub_list, continuous_frame_no_list, tbar)
else:
self.lama_mode(sub_list, tbar)
self.video_cap.release()