更新readme和注解

This commit is contained in:
knight0zh
2024-03-09 10:29:06 +08:00
parent d4fc273756
commit 7a2f0ba9e4
5 changed files with 123 additions and 64 deletions

View File

@@ -1,7 +1,37 @@
# AOI
### Area of Interest Library
### 调研学习实现一些AOI兴趣区算法
# AOI (Area of Interest) Library
#### 目前实现:
- 九宫格
- 四叉树
This library provides implementations of Area of Interest algorithms for spatial partitioning. Currently, it includes implementations for the following algorithms:
1. **九宫格 (Grid Manager)**
- A simple grid-based AOI algorithm dividing the area into a grid of cells and associating entities with the corresponding grid cells.
2. **四叉树 (Quadtree)**
- A hierarchical spatial partitioning algorithm dividing the area into four quadrants recursively, optimizing the search for entities within a specified range.
## Usage:
### 九宫格 (Grid Manager)
```go
// Example Usage:
aoiManager := NewGridManager(startX, startY, areaWidth, gridCount)
aoiManager.Add(x, y, "Entity1")
aoiManager.Delete(x, y, "Entity1")
result := aoiManager.Search(x, y)
// Example Usage:
quadTree := NewQuadTree(startX, startY, areaWidth)
quadTree.Add(x, y, "Entity1")
quadTree.Delete(x, y, "Entity1")
result := quadTree.Search(x, y)
```
## Features:
- Both implementations support adding, deleting, and searching for entities within a specified area of interest.
- The Grid Manager uses a simple grid-based approach, while the Quadtree provides a hierarchical and optimized solution for larger and dynamic environments.
## TODO:
Implement additional commonly used AOI algorithms:
- R-树 (R-tree)
- 六边形网格 (Hexagonal Grid)
- 基于事件的算法 (Event-driven Approaches)

15
aoi.go
View File

@@ -2,26 +2,31 @@ package aoi
import "sync"
// AOI (Area of Interest) represents an interface for managing entities within a specific area.
type AOI interface {
Add(x, y float64, name string) // 添加实体
Delete(x, y float64, name string) // 移除实体
Search(x, y float64) (result []string) // 范围查询
Add(x, y float64, name string) // Add an entity to the AOI
Delete(x, y float64, name string) // Delete an entity from the AOI
Search(x, y float64) (result []string) // Search for entities within a specified range
}
// Entity represents an object with coordinates and a key.
type Entity struct {
X, Y float64
Key string
}
var (
resultPool sync.Pool
entityPool sync.Pool
resultPool sync.Pool // Pool for recycling result slices
entityPool sync.Pool // Pool for recycling Entity objects
)
func init() {
// Initialize the resultPool to recycle result slices
resultPool.New = func() interface{} {
return make([]string, 0, 500)
}
// Initialize the entityPool to recycle Entity objects
entityPool.New = func() interface{} {
return &Entity{}
}

56
grid.go
View File

@@ -3,35 +3,37 @@ package aoi
import "sync"
var (
// 分别将这8个方向的方向向量按顺序写入x, y的分量数组
// Define direction vectors for the eight directions by populating dx and dy arrays.
dx = []int{-1, -1, -1, 0, 0, 1, 1, 1}
dy = []int{-1, 0, 1, -1, 1, -1, 0, 1}
)
// Grid 格子
// Grid represents a grid with a unique identifier and entities within it.
type Grid struct {
GID int //格子ID
Entities sync.Map //当前格子内的实体
GID int // Grid ID
Entities sync.Map // Entities within the current grid
}
// GridManger AOI九宫格实现矩形
type GridManger struct {
StartX int // X区域左边界坐标
StartY int // Y区域上边界坐标
AreaWidth int // 格子宽度(长=宽)
GridCount int // 格子数量
// GridManager implements AOI (Area of Interest) using a rectangular grid.
type GridManager struct {
StartX int // X-coordinate of the left boundary of the AOI
StartY int // Y-coordinate of the upper boundary of the AOI
AreaWidth int // Width of each grid (assuming square grids)
GridCount int // Number of grids in each row/column
grids map[int]*Grid
pool sync.Pool
}
// NewGrid creates a new grid with the specified ID.
func NewGrid(gid int) *Grid {
return &Grid{
GID: gid,
}
}
func NewGridManger(startX, startY, areaWidth, gridCount int) AOI {
manager := &GridManger{
// NewGridManager initializes a new GridManager with the specified parameters.
func NewGridManager(startX, startY, areaWidth, gridCount int) AOI {
manager := &GridManager{
StartX: startX,
StartY: startY,
AreaWidth: areaWidth,
@@ -42,9 +44,10 @@ func NewGridManger(startX, startY, areaWidth, gridCount int) AOI {
return make([]*Grid, 0, 9)
}
// Initialize grids with unique IDs
for y := 0; y < gridCount; y++ {
for x := 0; x < gridCount; x++ {
//格子编号:ID = IDy *nx + IDx (利用格子坐标得到格子编号)
// Grid ID calculation: ID = IDy * nx + IDx (using grid coordinates to obtain grid ID)
gID := y*gridCount + x
manager.grids[gID] = NewGrid(gID)
}
@@ -53,20 +56,21 @@ func NewGridManger(startX, startY, areaWidth, gridCount int) AOI {
return manager
}
func (g *GridManger) gridWidth() int {
// gridWidth calculates the width of each grid.
func (g *GridManager) gridWidth() int {
return g.AreaWidth / g.GridCount
}
// getGIDByPos 通过横纵坐标获取对应的格子ID
func (g *GridManger) getGIDByPos(x, y float64) int {
// getGIDByPos calculates the grid ID based on the given coordinates.
func (g *GridManager) getGIDByPos(x, y float64) int {
gx := (int(x) - g.StartX) / g.gridWidth()
gy := (int(y) - g.StartY) / g.gridWidth()
return gy*g.GridCount + gx
}
// getSurroundGrids 根据格子的gID得到当前周边的九宫格信息
func (g *GridManger) getSurroundGrids(gID int) []*Grid {
// getSurroundGrids retrieves information about the surrounding nine grids based on the given grid ID.
func (g *GridManager) getSurroundGrids(gID int) []*Grid {
grids := g.pool.Get().([]*Grid)
defer func() {
grids = grids[:0]
@@ -77,9 +81,11 @@ func (g *GridManger) getSurroundGrids(gID int) []*Grid {
return grids
}
grids = append(grids, g.grids[gID])
// 根据gID, 得到格子所在的坐标
// Calculate the coordinates of the grid based on the grid ID
x, y := gID%g.GridCount, gID/g.GridCount
// Add information about the eight neighboring grids
for i := 0; i < 8; i++ {
newX := x + dx[i]
newY := y + dy[i]
@@ -92,7 +98,8 @@ func (g *GridManger) getSurroundGrids(gID int) []*Grid {
return grids
}
func (g *GridManger) Add(x, y float64, key string) {
// Add adds an entity to the appropriate grid based on its coordinates.
func (g *GridManager) Add(x, y float64, key string) {
entity := entityPool.Get().(*Entity)
entity.X = x
entity.Y = y
@@ -103,7 +110,8 @@ func (g *GridManger) Add(x, y float64, key string) {
grid.Entities.Store(key, entity)
}
func (g *GridManger) Delete(x, y float64, key string) {
// Delete removes an entity from the grid based on its coordinates.
func (g *GridManager) Delete(x, y float64, key string) {
ID := g.getGIDByPos(x, y)
grid := g.grids[ID]
@@ -113,14 +121,18 @@ func (g *GridManger) Delete(x, y float64, key string) {
}
}
func (g *GridManger) Search(x, y float64) []string {
// Search retrieves a list of entity keys within the specified coordinates' range.
func (g *GridManager) Search(x, y float64) []string {
result := resultPool.Get().([]string)
defer func() {
result = result[:0]
resultPool.Put(result)
}()
ID := g.getGIDByPos(x, y)
grids := g.getSurroundGrids(ID)
// Collect entity keys from the surrounding grids
for _, grid := range grids {
grid.Entities.Range(func(_, value interface{}) bool {
result = append(result, value.(*Entity).Key)

View File

@@ -2,27 +2,30 @@ package aoi
import (
"fmt"
"github.com/stretchr/testify/assert"
"math/rand"
"sort"
"sync"
"testing"
"time"
"github.com/stretchr/testify/assert"
)
/**
0 50 100 150 200
-----------------------------
/*
*
0 50 100 150 200
-----------------------------
0 | 0 1 2 3 4
50 | 5 6 7 8 9
100 | 10 11 12 13 14
150 | 15 16 17 18 19
200 | 20 21 22 23 24
*/
func TestGridManger_GetSurroundGrids(t *testing.T) {
aol := NewGridManger(0, 0, 250, 5)
manger := aol.(*GridManger)
aol := NewGridManager(0, 0, 250, 5)
manger := aol.(*GridManager)
tests := []struct {
x, y float64
want []int
@@ -62,8 +65,8 @@ func TestGridManger_GetSurroundGrids(t *testing.T) {
}
func TestNewGridManger(t *testing.T) {
aol := NewGridManger(0, 0, 250, 5)
manger := aol.(*GridManger)
aol := NewGridManager(0, 0, 250, 5)
manger := aol.(*GridManager)
entities := []*Entity{
{
X: 0, Y: 0, Key: "a",
@@ -118,8 +121,8 @@ func TestNewGridManger(t *testing.T) {
func BenchmarkGridManger(b *testing.B) {
var wg sync.WaitGroup
aol := NewGridManger(0, 0, 1024, 16)
manger := aol.(*GridManger)
aol := NewGridManager(0, 0, 1024, 16)
manger := aol.(*GridManager)
rand.Seed(time.Now().UnixNano())
for i := 0; i < b.N; i++ {

View File

@@ -8,22 +8,24 @@ const (
leftDown
rightDown
maxCap = 500 // 节点最大容量
maxDeep = 4 // 节点最大深度
radius = 16 // 视野半径
maxCap = 500 // Maximum capacity of a node
maxDeep = 4 // Maximum depth of the quadtree
radius = 16 // Field of view radius
)
// Node represents a node in the quadtree.
type Node struct {
Leaf bool // 是否为叶子节点
Deep int // 深度
AreaWidth float64 // 格子宽度(长=宽)
XStart float64 // 起始范围
YStart float64 // 起始范围
Tree *QuadTree // 树指针
Child [4]*Node // 子节点
Entities *sync.Map // 实体
Leaf bool // Indicates whether the node is a leaf node
Deep int // Depth of the node in the quadtree
AreaWidth float64 // Width of the grid (assuming square grids)
XStart float64 // Starting X-coordinate of the node's area
YStart float64 // Starting Y-coordinate of the node's area
Tree *QuadTree // Pointer to the quadtree
Child [4]*Node // Child nodes (quadrants)
Entities *sync.Map // Entities within the node
}
// QuadTree represents a quadtree data structure for spatial partitioning.
type QuadTree struct {
maxCap, maxDeep int
radius float64
@@ -31,6 +33,7 @@ type QuadTree struct {
*Node
}
// NewSonNode creates a new child node with the specified parameters.
func NewSonNode(xStart, yStart float64, parent *Node) *Node {
son := &Node{
Leaf: true,
@@ -45,7 +48,7 @@ func NewSonNode(xStart, yStart float64, parent *Node) *Node {
return son
}
// canCut 检查节点是否可以分割
// canCut checks whether the node can be split.
func (n *Node) canCut() bool {
if n.XStart+n.AreaWidth/2 > 0 && n.YStart+n.AreaWidth/2 > 0 {
return true
@@ -53,7 +56,7 @@ func (n *Node) canCut() bool {
return false
}
// needCut 检查节点是否需要分割
// needCut checks whether the node needs to be split.
func (n *Node) needCut() bool {
lens := 0
n.Entities.Range(func(key, value interface{}) bool {
@@ -63,7 +66,7 @@ func (n *Node) needCut() bool {
return lens+1 > n.Tree.maxCap && n.Deep+1 <= n.Tree.maxDeep && n.canCut()
}
// intersects 检查坐标是否在节点范围内
// intersects checks if the coordinates are within the node's range.
func (n *Node) intersects(x, y float64) bool {
if n.XStart <= x && x < n.XStart+n.AreaWidth && n.YStart <= y && y < n.YStart+n.AreaWidth {
return true
@@ -71,7 +74,7 @@ func (n *Node) intersects(x, y float64) bool {
return false
}
// findSonQuadrant 根据坐标寻找子节点的方位
// findSonQuadrant finds the quadrant of a child node based on coordinates.
func (n *Node) findSonQuadrant(x, y float64) int {
if x < n.Child[rightDown].XStart {
if y < n.Child[rightDown].YStart {
@@ -85,7 +88,7 @@ func (n *Node) findSonQuadrant(x, y float64) int {
return rightDown
}
// cutNode 分割节点
// cutNode splits the node into four child nodes.
func (n *Node) cutNode() {
n.Leaf = false
half := n.AreaWidth / 2
@@ -95,7 +98,7 @@ func (n *Node) cutNode() {
n.Child[leftDown] = NewSonNode(n.XStart, n.YStart+half, n)
n.Child[rightDown] = NewSonNode(n.XStart+half, n.YStart+half, n)
// 将实体迁移到对应子节点
// Move entities to the corresponding child nodes
n.Entities.Range(func(k, v interface{}) bool {
entity := v.(*Entity)
for _, node := range n.Child {
@@ -111,6 +114,7 @@ func (n *Node) cutNode() {
n.Entities = nil
}
// NewQuadTree initializes a new QuadTree with the specified parameters.
func NewQuadTree(xStart, yStart, width float64) AOI {
basicNode := &Node{
Leaf: true,
@@ -134,13 +138,14 @@ func NewQuadTree(xStart, yStart, width float64) AOI {
return tree
}
// Add adds an entity to the quadtree based on its coordinates.
func (n *Node) Add(x, y float64, name string) {
// 判断是否需要分割
// Check if splitting is required
if n.Leaf && n.needCut() {
n.cutNode()
}
// 非叶子节点往下递归
// Recursively add to non-leaf nodes
if !n.Leaf {
n.Child[n.findSonQuadrant(x, y)].Add(x, y, name)
return
@@ -151,10 +156,11 @@ func (n *Node) Add(x, y float64, name string) {
entity.Y = y
entity.Key = name
// 叶子节点进行存储
// Store in leaf node
n.Entities.Store(entity.Key, entity)
}
// Delete removes an entity from the quadtree based on its coordinates.
func (n *Node) Delete(x, y float64, name string) {
if !n.Leaf {
n.Child[n.findSonQuadrant(x, y)].Delete(x, y, name)
@@ -167,6 +173,7 @@ func (n *Node) Delete(x, y float64, name string) {
}
}
// Search retrieves a list of entity keys within the specified coordinates' range.
func (n *Node) Search(x, y float64) []string {
result := resultPool.Get().([]string)
defer func() {
@@ -177,6 +184,7 @@ func (n *Node) Search(x, y float64) []string {
return result
}
// search recursively searches for entities within the specified coordinates' range.
func (n *Node) search(x, y float64, result *[]string) {
if !n.Leaf {
minX, maxX := x-n.Tree.radius, x+n.Tree.radius
@@ -191,6 +199,7 @@ func (n *Node) search(x, y float64, result *[]string) {
return
}
// Collect entity keys within the leaf node
n.Entities.Range(func(key, value interface{}) bool {
*result = append(*result, value.(*Entity).Key)
return true