mirror of
https://github.com/YaoFANGUK/video-subtitle-remover.git
synced 2026-02-16 13:14:51 +08:00
101 lines
4.8 KiB
Python
101 lines
4.8 KiB
Python
import cv2
|
|
import numpy as np
|
|
from typing import Tuple
|
|
|
|
def resize_and_pad(image: np.ndarray, mask: np.ndarray, target_size: int = 512) -> Tuple[np.ndarray, np.ndarray]:
|
|
"""
|
|
Resizes an image and its corresponding mask to have the longer side equal to `target_size` and pads them to make them
|
|
both have the same size. The resulting image and mask have dimensions (target_size, target_size).
|
|
|
|
Args:
|
|
image: A numpy array representing the image to resize and pad.
|
|
mask: A numpy array representing the mask to resize and pad.
|
|
target_size: An integer specifying the desired size of the longer side after resizing.
|
|
|
|
Returns:
|
|
A tuple containing two numpy arrays - the resized and padded image and the resized and padded mask.
|
|
"""
|
|
height, width, _ = image.shape
|
|
max_dim = max(height, width)
|
|
scale = target_size / max_dim
|
|
new_height = int(height * scale)
|
|
new_width = int(width * scale)
|
|
image_resized = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
|
|
mask_resized = cv2.resize(mask, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
|
|
pad_height = target_size - new_height
|
|
pad_width = target_size - new_width
|
|
top_pad = pad_height // 2
|
|
bottom_pad = pad_height - top_pad
|
|
left_pad = pad_width // 2
|
|
right_pad = pad_width - left_pad
|
|
image_padded = np.pad(image_resized, ((top_pad, bottom_pad), (left_pad, right_pad), (0, 0)), mode='constant')
|
|
mask_padded = np.pad(mask_resized, ((top_pad, bottom_pad), (left_pad, right_pad)), mode='constant')
|
|
return image_padded, mask_padded, (top_pad, bottom_pad, left_pad, right_pad)
|
|
|
|
def recover_size(image_padded: np.ndarray, mask_padded: np.ndarray, orig_size: Tuple[int, int],
|
|
padding_factors: Tuple[int, int, int, int]) -> Tuple[np.ndarray, np.ndarray]:
|
|
"""
|
|
Resizes a padded and resized image and mask to the original size.
|
|
|
|
Args:
|
|
image_padded: A numpy array representing the padded and resized image.
|
|
mask_padded: A numpy array representing the padded and resized mask.
|
|
orig_size: A tuple containing two integers - the original height and width of the image before resizing and padding.
|
|
|
|
Returns:
|
|
A tuple containing two numpy arrays - the recovered image and the recovered mask with dimensions `orig_size`.
|
|
"""
|
|
h,w,c = image_padded.shape
|
|
top_pad, bottom_pad, left_pad, right_pad = padding_factors
|
|
image = image_padded[top_pad:h-bottom_pad, left_pad:w-right_pad, :]
|
|
mask = mask_padded[top_pad:h-bottom_pad, left_pad:w-right_pad]
|
|
image_resized = cv2.resize(image, orig_size[::-1], interpolation=cv2.INTER_LINEAR)
|
|
mask_resized = cv2.resize(mask, orig_size[::-1], interpolation=cv2.INTER_LINEAR)
|
|
return image_resized, mask_resized
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# image = cv2.imread('example/boat.jpg')
|
|
# mask = cv2.imread('example/boat_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
|
# image = cv2.imread('example/groceries.jpg')
|
|
# mask = cv2.imread('example/groceries_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
|
# image = cv2.imread('example/bridge.jpg')
|
|
# mask = cv2.imread('example/bridge_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
|
# image = cv2.imread('example/person_umbrella.jpg')
|
|
# mask = cv2.imread('example/person_umbrella_mask_2.png', cv2.IMREAD_GRAYSCALE)
|
|
# image = cv2.imread('example/hippopotamus.jpg')
|
|
# mask = cv2.imread('example/hippopotamus_mask_1.png', cv2.IMREAD_GRAYSCALE)
|
|
image = cv2.imread('/data1/yutao/projects/IAM/Inpaint-Anything/example/fill-anything/sample5.jpeg')
|
|
mask = cv2.imread('/data1/yutao/projects/IAM/Inpaint-Anything/example/fill-anything/sample5/mask.png', cv2.IMREAD_GRAYSCALE)
|
|
print(image.shape)
|
|
print(mask.shape)
|
|
cv2.imwrite('original_image.jpg', image)
|
|
cv2.imwrite('original_mask.jpg', mask)
|
|
image_padded, mask_padded, padding_factors = resize_and_pad(image, mask)
|
|
cv2.imwrite('padded_image.png', image_padded)
|
|
cv2.imwrite('padded_mask.png', mask_padded)
|
|
print(image_padded.shape, mask_padded.shape, padding_factors)
|
|
|
|
# ^ ------------------------------------------------------------------------------------
|
|
# ^ Please conduct inpainting or filling here on the cropped image with the cropped mask
|
|
# ^ ------------------------------------------------------------------------------------
|
|
|
|
# resize and pad the image and mask
|
|
|
|
# perform some operation on the 512x512 image and mask
|
|
# ...
|
|
|
|
# recover the image and mask to the original size
|
|
height, width, _ = image.shape
|
|
image_resized, mask_resized = recover_size(image_padded, mask_padded, (height, width), padding_factors)
|
|
|
|
# save the resized and recovered image and mask
|
|
cv2.imwrite('resized_and_padded_image.png', image_padded)
|
|
cv2.imwrite('resized_and_padded_mask.png', mask_padded)
|
|
cv2.imwrite('recovered_image.png', image_resized)
|
|
cv2.imwrite('recovered_mask.png', mask_resized)
|
|
|
|
|