mirror of
https://github.com/YaoFANGUK/video-subtitle-remover.git
synced 2026-02-18 23:14:46 +08:00
143 lines
5.7 KiB
Python
Executable File
143 lines
5.7 KiB
Python
Executable File
import torch
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
def flow_warp(x,
|
|
flow,
|
|
interpolation='bilinear',
|
|
padding_mode='zeros',
|
|
align_corners=True):
|
|
"""Warp an image or a feature map with optical flow.
|
|
Args:
|
|
x (Tensor): Tensor with size (n, c, h, w).
|
|
flow (Tensor): Tensor with size (n, h, w, 2). The last dimension is
|
|
a two-channel, denoting the width and height relative offsets.
|
|
Note that the values are not normalized to [-1, 1].
|
|
interpolation (str): Interpolation mode: 'nearest' or 'bilinear'.
|
|
Default: 'bilinear'.
|
|
padding_mode (str): Padding mode: 'zeros' or 'border' or 'reflection'.
|
|
Default: 'zeros'.
|
|
align_corners (bool): Whether align corners. Default: True.
|
|
Returns:
|
|
Tensor: Warped image or feature map.
|
|
"""
|
|
if x.size()[-2:] != flow.size()[1:3]:
|
|
raise ValueError(f'The spatial sizes of input ({x.size()[-2:]}) and '
|
|
f'flow ({flow.size()[1:3]}) are not the same.')
|
|
_, _, h, w = x.size()
|
|
# create mesh grid
|
|
device = flow.device
|
|
grid_y, grid_x = torch.meshgrid(torch.arange(0, h, device=device), torch.arange(0, w, device=device))
|
|
grid = torch.stack((grid_x, grid_y), 2).type_as(x) # (w, h, 2)
|
|
grid.requires_grad = False
|
|
|
|
grid_flow = grid + flow
|
|
# scale grid_flow to [-1,1]
|
|
grid_flow_x = 2.0 * grid_flow[:, :, :, 0] / max(w - 1, 1) - 1.0
|
|
grid_flow_y = 2.0 * grid_flow[:, :, :, 1] / max(h - 1, 1) - 1.0
|
|
grid_flow = torch.stack((grid_flow_x, grid_flow_y), dim=3)
|
|
output = F.grid_sample(x,
|
|
grid_flow,
|
|
mode=interpolation,
|
|
padding_mode=padding_mode,
|
|
align_corners=align_corners)
|
|
return output
|
|
|
|
|
|
# def image_warp(image, flow):
|
|
# b, c, h, w = image.size()
|
|
# device = image.device
|
|
# flow = torch.cat([flow[:, 0:1, :, :] / ((w - 1.0) / 2.0), flow[:, 1:2, :, :] / ((h - 1.0) / 2.0)], dim=1) # normalize to [-1~1](from upper left to lower right
|
|
# flow = flow.permute(0, 2, 3, 1) # if you wanna use grid_sample function, the channel(band) shape of show must be in the last dimension
|
|
# x = np.linspace(-1, 1, w)
|
|
# y = np.linspace(-1, 1, h)
|
|
# X, Y = np.meshgrid(x, y)
|
|
# grid = torch.cat((torch.from_numpy(X.astype('float32')).unsqueeze(0).unsqueeze(3),
|
|
# torch.from_numpy(Y.astype('float32')).unsqueeze(0).unsqueeze(3)), 3).to(device)
|
|
# output = torch.nn.functional.grid_sample(image, grid + flow, mode='bilinear', padding_mode='zeros')
|
|
# return output
|
|
|
|
|
|
def length_sq(x):
|
|
return torch.sum(torch.square(x), dim=1, keepdim=True)
|
|
|
|
|
|
def fbConsistencyCheck(flow_fw, flow_bw, alpha1=0.01, alpha2=0.5):
|
|
flow_bw_warped = flow_warp(flow_bw, flow_fw.permute(0, 2, 3, 1)) # wb(wf(x))
|
|
flow_fw_warped = flow_warp(flow_fw, flow_bw.permute(0, 2, 3, 1)) # wf(wb(x))
|
|
flow_diff_fw = flow_fw + flow_bw_warped # wf + wb(wf(x))
|
|
flow_diff_bw = flow_bw + flow_fw_warped # wb + wf(wb(x))
|
|
|
|
mag_sq_fw = length_sq(flow_fw) + length_sq(flow_bw_warped) # |wf| + |wb(wf(x))|
|
|
mag_sq_bw = length_sq(flow_bw) + length_sq(flow_fw_warped) # |wb| + |wf(wb(x))|
|
|
occ_thresh_fw = alpha1 * mag_sq_fw + alpha2
|
|
occ_thresh_bw = alpha1 * mag_sq_bw + alpha2
|
|
|
|
fb_occ_fw = (length_sq(flow_diff_fw) > occ_thresh_fw).float()
|
|
fb_occ_bw = (length_sq(flow_diff_bw) > occ_thresh_bw).float()
|
|
|
|
return fb_occ_fw, fb_occ_bw # fb_occ_fw -> frame2 area occluded by frame1, fb_occ_bw -> frame1 area occluded by frame2
|
|
|
|
|
|
def rgb2gray(image):
|
|
gray_image = image[:, 0] * 0.299 + image[:, 1] * 0.587 + 0.110 * image[:, 2]
|
|
gray_image = gray_image.unsqueeze(1)
|
|
return gray_image
|
|
|
|
|
|
def ternary_transform(image, max_distance=1):
|
|
device = image.device
|
|
patch_size = 2 * max_distance + 1
|
|
intensities = rgb2gray(image) * 255
|
|
out_channels = patch_size * patch_size
|
|
w = np.eye(out_channels).reshape(out_channels, 1, patch_size, patch_size)
|
|
weights = torch.from_numpy(w).float().to(device)
|
|
patches = F.conv2d(intensities, weights, stride=1, padding=1)
|
|
transf = patches - intensities
|
|
transf_norm = transf / torch.sqrt(0.81 + torch.square(transf))
|
|
return transf_norm
|
|
|
|
|
|
def hamming_distance(t1, t2):
|
|
dist = torch.square(t1 - t2)
|
|
dist_norm = dist / (0.1 + dist)
|
|
dist_sum = torch.sum(dist_norm, dim=1, keepdim=True)
|
|
return dist_sum
|
|
|
|
|
|
def create_mask(mask, paddings):
|
|
"""
|
|
padding: [[top, bottom], [left, right]]
|
|
"""
|
|
shape = mask.shape
|
|
inner_height = shape[2] - (paddings[0][0] + paddings[0][1])
|
|
inner_width = shape[3] - (paddings[1][0] + paddings[1][1])
|
|
inner = torch.ones([inner_height, inner_width])
|
|
|
|
mask2d = F.pad(inner, pad=[paddings[1][0], paddings[1][1], paddings[0][0], paddings[0][1]])
|
|
mask3d = mask2d.unsqueeze(0)
|
|
mask4d = mask3d.unsqueeze(0).repeat(shape[0], 1, 1, 1)
|
|
return mask4d.detach()
|
|
|
|
|
|
def ternary_loss2(frame1, warp_frame21, confMask, masks, max_distance=1):
|
|
"""
|
|
|
|
Args:
|
|
frame1: torch tensor, with shape [b * t, c, h, w]
|
|
warp_frame21: torch tensor, with shape [b * t, c, h, w]
|
|
confMask: confidence mask, with shape [b * t, c, h, w]
|
|
masks: torch tensor, with shape [b * t, c, h, w]
|
|
max_distance: maximum distance.
|
|
|
|
Returns: ternary loss
|
|
|
|
"""
|
|
t1 = ternary_transform(frame1)
|
|
t21 = ternary_transform(warp_frame21)
|
|
dist = hamming_distance(t1, t21)
|
|
loss = torch.mean(dist * confMask * masks) / torch.mean(masks)
|
|
return loss
|
|
|