[简体中文](README.md) | English ## Project Introduction ![License](https://img.shields.io/badge/License-Apache%202-red.svg) ![python version](https://img.shields.io/badge/Python-3.11+-blue.svg) ![support os](https://img.shields.io/badge/OS-Windows/macOS/Linux-green.svg) Video-subtitle-remover (VSR) is an AI-based software that removes hardcoded subtitles from videos. It mainly implements the following functionalities: - **Lossless resolution**: Removes hardcoded subtitles from videos and generates files without subtitles. - Fills in the removed subtitle text area using a powerful AI algorithm model (non-adjacent pixel filling and mosaic removal). - Supports custom subtitle positions by only removing subtitles in the defined location (input position). - Supports automatic removal of all text throughout the entire video (without inputting a position). - Supports multi-selection of images for batch removal of watermark text.

demo.png

> Download the .zip package directly, extract, and run it. If it cannot run, follow the tutorial below to try installing the conda environment and running the source code. **Download Links:** Windows GPU Version v1.1.0 (GPU): - Baidu Cloud Disk: vsr_windows_gpu_v1.1.0.zip Extraction Code: **vsr1** - Google Drive: vsr_windows_gpu_v1.1.0.zip **Pre-built Package Comparison**: | Pre-built Package Name | Python | Paddle | Torch | Environment | Supported Compute Capability Range | |----------------------------------|--------|--------|--------|-----------------------------------|------------------------------------| | `vse-windows-directml.7z` | 3.12 | 3.0.0 | 2.4.1 | Windows without Nvidia GPU | Universal | | `vse-windows-nvidia-cuda-11.8.7z`| 3.12 | 3.0.0 | 2.7.0 | CUDA 11.8 | 3.5 – 8.9 | | `vse-windows-nvidia-cuda-12.6.7z`| 3.12 | 3.0.0 | 2.7.0 | CUDA 12.6 | 5.0 – 8.9 | | `vse-windows-nvidia-cuda-12.8.7z`| 3.12 | 3.0.0 | 2.7.0 | CUDA 12.8 | 5.0 – 9.0+ | > NVIDIA provides a list of supported compute capabilities for each GPU model. You can refer to the following link: [CUDA GPUs](https://developer.nvidia.com/cuda-gpus) to check which CUDA version is compatible with your GPU. **Docker Versions:** ```shell # Nvidia 10, 20, 30 Series Graphics Cards docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda11.8 # Nvidia 40 Series Graphics Cards docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda12.6 # Nvidia 50 Series Graphics Cards docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-cuda12.8 # AMD / Intel Dedicated or Integrated Graphics docker run -it --name vsr --gpus all eritpchy/video-subtitle-remover:1.1.1-directml # Demo video, input /vsr/test/test.mp4 docker cp vsr:/vsr/test/test_no_sub.mp4 ./ ``` ## Demonstration - GUI:

demo2.gif

- Click to view demo video👇

demo.gif

## Source Code Usage Instructions #### 1. Install Python Please ensure that you have installed Python 3.12+. - Windows users can go to the [Python official website](https://www.python.org/downloads/windows/) to download and install Python. - MacOS users can install using Homebrew: ```shell brew install python@3.12 ``` - Linux users can install via the package manager, such as on Ubuntu/Debian: ```shell sudo apt update && sudo apt install python3.12 python3.12-venv python3.12-dev ``` #### 2. Install Dependencies It is recommended to use a virtual environment to manage project dependencies to avoid conflicts with the system environment. (1) Create and activate the virtual environment: ```shell python -m venv videoEnv ``` - Windows: ```shell videoEnv\\Scripts\\activate ``` - MacOS/Linux: ```shell source videoEnv/bin/activate ``` #### 3. Create and Activate Project Directory Change to the directory where your source code is located: ```shell cd ``` > For example, if your source code is in the `tools` folder on the D drive and the folder name is `video-subtitle-remover`, use: > ```shell > cd D:/tools/video-subtitle-remover-main > ``` #### 4. Install the Appropriate Runtime Environment This project supports two runtime modes: CUDA (NVIDIA GPU acceleration) and DirectML (AMD, Intel, and other GPUs/APUs). ##### (1) CUDA (For NVIDIA GPU users) > Make sure your NVIDIA GPU driver supports the selected CUDA version. - Recommended CUDA 11.8, corresponding to cuDNN 8.6.0. - Install CUDA: - Windows: [Download CUDA 11.8](https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe) - Linux: ```shell wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run sudo sh cuda_11.8.0_520.61.05_linux.run ``` - CUDA is not supported on MacOS. - Install cuDNN (CUDA 11.8 corresponds to cuDNN 8.6.0): - [Windows cuDNN 8.6.0 Download](https://developer.download.nvidia.cn/compute/redist/cudnn/v8.6.0/local_installers/11.8/cudnn-windows-x86_64-8.6.0.163_cuda11-archive.zip) - [Linux cuDNN 8.6.0 Download](https://developer.download.nvidia.cn/compute/redist/cudnn/v8.6.0/local_installers/11.8/cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz) - Follow the installation guide in the NVIDIA official documentation. - Install PaddlePaddle GPU version (CUDA 11.8): ```shell pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/ ``` - Install Torch GPU version (CUDA 11.8): ```shell pip install torch==2.7.0 torchvision==0.22.0 --index-url https://download.pytorch.org/whl/cu118 ``` - Install other dependencies: ```shell pip install -r requirements.txt ``` ##### (2) DirectML (For AMD, Intel, and other GPU/APU users) - Suitable for Windows devices with AMD/NVIDIA/Intel GPUs. - Install ONNX Runtime DirectML version: ```shell pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/ pip install -r requirements.txt pip install -r requirements_directml.txt ``` #### 4. Run the program - Run the graphical interface ```shell python gui.py ``` - Run the command line version (CLI) ```shell python ./backend/main.py ``` ## Common Issues 1. How to deal with slow removal speed You can greatly increase the removal speed by modifying the parameters in backend/config.py: ```python MODE = InpaintMode.STTN # Set to STTN algorithm STTN_SKIP_DETECTION = True # Skip subtitle detection ``` 2. What to do if the video removal results are not satisfactory Modify the values in backend/config.py and try different removal algorithms. Here is an introduction to the algorithms: > - **InpaintMode.STTN** algorithm: Good for live-action videos and fast in speed, capable of skipping subtitle detection > - **InpaintMode.LAMA** algorithm: Best for images and effective for animated videos, moderate speed, unable to skip subtitle detection > - **InpaintMode.PROPAINTER** algorithm: Consumes a significant amount of VRAM, slower in speed, works better for videos with very intense movement - Using the STTN algorithm ```python MODE = InpaintMode.STTN # Set to STTN algorithm # Number of neighboring frames, increasing this will increase memory usage and improve the result STTN_NEIGHBOR_STRIDE = 10 # Length of reference frames, increasing this will increase memory usage and improve the result STTN_REFERENCE_LENGTH = 10 # Set the maximum number of frames processed simultaneously by the STTN algorithm, a larger value leads to slower processing but better results # Ensure that STTN_MAX_LOAD_NUM is greater than STTN_NEIGHBOR_STRIDE and STTN_REFERENCE_LENGTH STTN_MAX_LOAD_NUM = 30 ``` - Using the LAMA algorithm ```python MODE = InpaintMode.LAMA # Set to LAMA algorithm LAMA_SUPER_FAST = False # Ensure quality ``` 3. CondaHTTPError Place the .condarc file from the project in the user directory (C:/Users/). If the file already exists in the user directory, overwrite it. Solution: https://zhuanlan.zhihu.com/p/260034241 4. 7z file extraction error Solution: Upgrade the 7-zip extraction program to the latest version.