mirror of
https://github.com/YaoFANGUK/video-subtitle-remover.git
synced 2026-02-04 04:34:41 +08:00
Update README.md
This commit is contained in:
66
README.md
66
README.md
@@ -80,69 +80,61 @@ conda activate videoEnv
|
||||
|
||||
<details>
|
||||
<summary>Linux用户</summary>
|
||||
<h5>(1) 下载CUDA 11.7</h5>
|
||||
<pre><code>wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run</code></pre>
|
||||
<h5>(2) 安装CUDA 11.7</h5>
|
||||
<pre><code>sudo sh cuda_11.7.0_515.43.04_linux.run</code></pre>
|
||||
<h5>(1) 下载CUDA 11.8</h5>
|
||||
<pre><code>wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run</code></pre>
|
||||
<h5>(2) 安装CUDA 11.8</h5>
|
||||
<pre><code>sudo sh cuda_11.8.0_520.61.05_linux.run</code></pre>
|
||||
<p>1. 输入accept</p>
|
||||
<img src="https://i.328888.xyz/2023/03/31/iwVoeH.png" width="500" alt="">
|
||||
<p>2. 选中CUDA Toolkit 11.7(如果你没有安装nvidia驱动则选中Driver,如果你已经安装了nvidia驱动请不要选中driver),之后选中install,回车</p>
|
||||
<p>2. 选中CUDA Toolkit 11.8(如果你没有安装nvidia驱动则选中Driver,如果你已经安装了nvidia驱动请不要选中driver),之后选中install,回车</p>
|
||||
<img src="https://i.328888.xyz/2023/03/31/iwVThJ.png" width="500" alt="">
|
||||
<p>3. 添加环境变量</p>
|
||||
<p>在 ~/.bashrc 加入以下内容</p>
|
||||
<pre><code># CUDA
|
||||
export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}}
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}</code></pre>
|
||||
export PATH=/usr/local/cuda-11.8/bin${PATH:+:${PATH}}
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}</code></pre>
|
||||
<p>使其生效</p>
|
||||
<pre><code>source ~/.bashrc</code></pre>
|
||||
<h5>(3) 下载cuDNN 8.4.1</h5>
|
||||
<p>国内:<a href="https://pan.baidu.com/s/1Gd_pSVzWfX1G7zCuqz6YYA">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a> 提取码:57mg</p>
|
||||
<p>国外:<a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz">cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz</a></p>
|
||||
<h5>(4) 安装cuDNN 8.4.1</h5>
|
||||
<pre><code> tar -xf cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz
|
||||
mv cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive cuda
|
||||
sudo cp ./cuda/include/* /usr/local/cuda-11.7/include/
|
||||
sudo cp ./cuda/lib/* /usr/local/cuda-11.7/lib64/
|
||||
sudo chmod a+r /usr/local/cuda-11.7/lib64/*
|
||||
sudo chmod a+r /usr/local/cuda-11.7/include/*</code></pre>
|
||||
<h5>(3) 下载cuDNN 8.6.0</h5>
|
||||
<p>国内:<a href="https://pan.baidu.com/s/1Gd_pSVzWfX1G7zCuqz6YYA">cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz</a> 提取码:57mg</p>
|
||||
<p>国外:<a href="https://github.com/YaoFANGUK/video-subtitle-remover/releases/download/1.0.0/cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz">cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz</a></p>
|
||||
<h5>(4) 安装cuDNN 8.6.0</h5>
|
||||
<pre><code> tar -xf cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz
|
||||
mv cudnn-linux-x86_64-8.6.0.163_cuda11-archive cuda
|
||||
sudo cp ./cuda/include/* /usr/local/cuda-11.8/include/
|
||||
sudo cp ./cuda/lib/* /usr/local/cuda-11.8/lib64/
|
||||
sudo chmod a+r /usr/local/cuda-11.8/lib64/*
|
||||
sudo chmod a+r /usr/local/cuda-11.8/include/*</code></pre>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Windows用户</summary>
|
||||
<h5>(1) 下载CUDA 11.7</h5>
|
||||
<a href="https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_516.01_windows.exe">cuda_11.7.0_516.01_windows.exe</a>
|
||||
<h5>(2) 安装CUDA 11.7</h5>
|
||||
<h5>(3) 下载cuDNN 8.2.4</h5>
|
||||
<p><a href="https://github.com/YaoFANGUK/video-subtitle-extractor/releases/download/1.0.0/cudnn-windows-x64-v8.2.4.15.zip">cudnn-windows-x64-v8.2.4.15.zip</a></p>
|
||||
<h5>(4) 安装cuDNN 8.2.4</h5>
|
||||
<h5>(1) 下载CUDA 11.8</h5>
|
||||
<a href="https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe">cuda_11.8.0_522.06_windows.exe</a>
|
||||
<h5>(2) 安装CUDA 11.8</h5>
|
||||
<h5>(3) 下载cuDNN 8.6.0</h5>
|
||||
<p><a href="https://github.com/YaoFANGUK/video-subtitle-remover/releases/download/1.0.0/cudnn-windows-x86_64-8.6.0.163_cuda11-archive.zip">cudnn-windows-x86_64-8.6.0.163_cuda11-archive.zip</a></p>
|
||||
<h5>(4) 安装cuDNN 8.6.0</h5>
|
||||
<p>
|
||||
将cuDNN解压后的cuda文件夹中的bin, include, lib目录下的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\对应目录下
|
||||
将cuDNN解压后的cuda文件夹中的bin, include, lib目录下的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\对应目录下
|
||||
</p>
|
||||
</details>
|
||||
|
||||
|
||||
- 安装GPU版本Paddlepaddle:
|
||||
|
||||
- windows:
|
||||
|
||||
```shell
|
||||
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
|
||||
```
|
||||
|
||||
- Linux:
|
||||
|
||||
```shell
|
||||
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
|
||||
```
|
||||
```shell
|
||||
python -m pip install paddlepaddle-gpu==2.6.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
```
|
||||
|
||||
- 安装GPU版本Pytorch:
|
||||
|
||||
```shell
|
||||
conda install pytorch==2.0.1 torchvision==0.16.0 pytorch-cuda=11.8 -c pytorch -c nvidia
|
||||
conda install pytorch==2.0.1 torchvision==0.15.2 pytorch-cuda=11.8 -c pytorch -c nvidia
|
||||
```
|
||||
或者使用
|
||||
```shell
|
||||
pip install torch==2.0.1 torchvision==0.16.0 --index-url https://download.pytorch.org/whl/cu118
|
||||
pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
|
||||
```
|
||||
|
||||
- 安装其他依赖:
|
||||
|
||||
Reference in New Issue
Block a user