mirror of
https://github.com/YaoFANGUK/video-subtitle-remover.git
synced 2026-02-21 00:44:46 +08:00
init
This commit is contained in:
72
backend/ppocr/utils/stats.py
Executable file
72
backend/ppocr/utils/stats.py
Executable file
@@ -0,0 +1,72 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import collections
|
||||
import numpy as np
|
||||
import datetime
|
||||
|
||||
__all__ = ['TrainingStats', 'Time']
|
||||
|
||||
|
||||
class SmoothedValue(object):
|
||||
"""Track a series of values and provide access to smoothed values over a
|
||||
window or the global series average.
|
||||
"""
|
||||
|
||||
def __init__(self, window_size):
|
||||
self.deque = collections.deque(maxlen=window_size)
|
||||
|
||||
def add_value(self, value):
|
||||
self.deque.append(value)
|
||||
|
||||
def get_median_value(self):
|
||||
return np.median(self.deque)
|
||||
|
||||
|
||||
def Time():
|
||||
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
|
||||
|
||||
|
||||
class TrainingStats(object):
|
||||
def __init__(self, window_size, stats_keys):
|
||||
self.window_size = window_size
|
||||
self.smoothed_losses_and_metrics = {
|
||||
key: SmoothedValue(window_size)
|
||||
for key in stats_keys
|
||||
}
|
||||
|
||||
def update(self, stats):
|
||||
for k, v in stats.items():
|
||||
if k not in self.smoothed_losses_and_metrics:
|
||||
self.smoothed_losses_and_metrics[k] = SmoothedValue(
|
||||
self.window_size)
|
||||
self.smoothed_losses_and_metrics[k].add_value(v)
|
||||
|
||||
def get(self, extras=None):
|
||||
stats = collections.OrderedDict()
|
||||
if extras:
|
||||
for k, v in extras.items():
|
||||
stats[k] = v
|
||||
for k, v in self.smoothed_losses_and_metrics.items():
|
||||
stats[k] = round(v.get_median_value(), 6)
|
||||
|
||||
return stats
|
||||
|
||||
def log(self, extras=None):
|
||||
d = self.get(extras)
|
||||
strs = []
|
||||
for k, v in d.items():
|
||||
strs.append('{}: {:x<6f}'.format(k, v))
|
||||
strs = ', '.join(strs)
|
||||
return strs
|
||||
Reference in New Issue
Block a user