mirror of
https://github.com/YaoFANGUK/video-subtitle-remover.git
synced 2026-02-20 00:14:47 +08:00
init
This commit is contained in:
118
backend/ppocr/postprocess/pse_postprocess/pse_postprocess.py
Executable file
118
backend/ppocr/postprocess/pse_postprocess/pse_postprocess.py
Executable file
@@ -0,0 +1,118 @@
|
||||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import paddle
|
||||
from paddle.nn import functional as F
|
||||
|
||||
from ppocr.postprocess.pse_postprocess.pse import pse
|
||||
|
||||
|
||||
class PSEPostProcess(object):
|
||||
"""
|
||||
The post process for PSE.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
thresh=0.5,
|
||||
box_thresh=0.85,
|
||||
min_area=16,
|
||||
box_type='quad',
|
||||
scale=4,
|
||||
**kwargs):
|
||||
assert box_type in ['quad', 'poly'], 'Only quad and poly is supported'
|
||||
self.thresh = thresh
|
||||
self.box_thresh = box_thresh
|
||||
self.min_area = min_area
|
||||
self.box_type = box_type
|
||||
self.scale = scale
|
||||
|
||||
def __call__(self, outs_dict, shape_list):
|
||||
pred = outs_dict['maps']
|
||||
if not isinstance(pred, paddle.Tensor):
|
||||
pred = paddle.to_tensor(pred)
|
||||
pred = F.interpolate(
|
||||
pred, scale_factor=4 // self.scale, mode='bilinear')
|
||||
|
||||
score = F.sigmoid(pred[:, 0, :, :])
|
||||
|
||||
kernels = (pred > self.thresh).astype('float32')
|
||||
text_mask = kernels[:, 0, :, :]
|
||||
kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask
|
||||
|
||||
score = score.numpy()
|
||||
kernels = kernels.numpy().astype(np.uint8)
|
||||
|
||||
boxes_batch = []
|
||||
for batch_index in range(pred.shape[0]):
|
||||
boxes, scores = self.boxes_from_bitmap(score[batch_index],
|
||||
kernels[batch_index],
|
||||
shape_list[batch_index])
|
||||
|
||||
boxes_batch.append({'points': boxes, 'scores': scores})
|
||||
return boxes_batch
|
||||
|
||||
def boxes_from_bitmap(self, score, kernels, shape):
|
||||
label = pse(kernels, self.min_area)
|
||||
return self.generate_box(score, label, shape)
|
||||
|
||||
def generate_box(self, score, label, shape):
|
||||
src_h, src_w, ratio_h, ratio_w = shape
|
||||
label_num = np.max(label) + 1
|
||||
|
||||
boxes = []
|
||||
scores = []
|
||||
for i in range(1, label_num):
|
||||
ind = label == i
|
||||
points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1]
|
||||
|
||||
if points.shape[0] < self.min_area:
|
||||
label[ind] = 0
|
||||
continue
|
||||
|
||||
score_i = np.mean(score[ind])
|
||||
if score_i < self.box_thresh:
|
||||
label[ind] = 0
|
||||
continue
|
||||
|
||||
if self.box_type == 'quad':
|
||||
rect = cv2.minAreaRect(points)
|
||||
bbox = cv2.boxPoints(rect)
|
||||
elif self.box_type == 'poly':
|
||||
box_height = np.max(points[:, 1]) + 10
|
||||
box_width = np.max(points[:, 0]) + 10
|
||||
|
||||
mask = np.zeros((box_height, box_width), np.uint8)
|
||||
mask[points[:, 1], points[:, 0]] = 255
|
||||
|
||||
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
bbox = np.squeeze(contours[0], 1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
bbox[:, 0] = np.clip(np.round(bbox[:, 0] / ratio_w), 0, src_w)
|
||||
bbox[:, 1] = np.clip(np.round(bbox[:, 1] / ratio_h), 0, src_h)
|
||||
boxes.append(bbox)
|
||||
scores.append(score_i)
|
||||
return boxes, scores
|
||||
Reference in New Issue
Block a user