This commit is contained in:
YaoFANGUK
2023-10-25 16:38:16 +08:00
commit 2b9360c299
602 changed files with 152490 additions and 0 deletions

View File

@@ -0,0 +1,15 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .pse_postprocess import PSEPostProcess

View File

@@ -0,0 +1,6 @@
## 编译
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/post_processing/pse
```python
python3 setup.py build_ext --inplace
```

View File

@@ -0,0 +1,29 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import subprocess
python_path = sys.executable
ori_path = os.getcwd()
os.chdir('ppocr/postprocess/pse_postprocess/pse')
if subprocess.call(
'{} setup.py build_ext --inplace'.format(python_path), shell=True) != 0:
raise RuntimeError(
'Cannot compile pse: {}, if your system is windows, you need to install all the default components of `desktop development using C++` in visual studio 2019+'.
format(os.path.dirname(os.path.realpath(__file__))))
os.chdir(ori_path)
from .pse import pse

View File

@@ -0,0 +1,70 @@
import numpy as np
import cv2
cimport numpy as np
cimport cython
cimport libcpp
cimport libcpp.pair
cimport libcpp.queue
from libcpp.pair cimport *
from libcpp.queue cimport *
@cython.boundscheck(False)
@cython.wraparound(False)
cdef np.ndarray[np.int32_t, ndim=2] _pse(np.ndarray[np.uint8_t, ndim=3] kernels,
np.ndarray[np.int32_t, ndim=2] label,
int kernel_num,
int label_num,
float min_area=0):
cdef np.ndarray[np.int32_t, ndim=2] pred
pred = np.zeros((label.shape[0], label.shape[1]), dtype=np.int32)
for label_idx in range(1, label_num):
if np.sum(label == label_idx) < min_area:
label[label == label_idx] = 0
cdef libcpp.queue.queue[libcpp.pair.pair[np.int16_t,np.int16_t]] que = \
queue[libcpp.pair.pair[np.int16_t,np.int16_t]]()
cdef libcpp.queue.queue[libcpp.pair.pair[np.int16_t,np.int16_t]] nxt_que = \
queue[libcpp.pair.pair[np.int16_t,np.int16_t]]()
cdef np.int16_t* dx = [-1, 1, 0, 0]
cdef np.int16_t* dy = [0, 0, -1, 1]
cdef np.int16_t tmpx, tmpy
points = np.array(np.where(label > 0)).transpose((1, 0))
for point_idx in range(points.shape[0]):
tmpx, tmpy = points[point_idx, 0], points[point_idx, 1]
que.push(pair[np.int16_t,np.int16_t](tmpx, tmpy))
pred[tmpx, tmpy] = label[tmpx, tmpy]
cdef libcpp.pair.pair[np.int16_t,np.int16_t] cur
cdef int cur_label
for kernel_idx in range(kernel_num - 1, -1, -1):
while not que.empty():
cur = que.front()
que.pop()
cur_label = pred[cur.first, cur.second]
is_edge = True
for j in range(4):
tmpx = cur.first + dx[j]
tmpy = cur.second + dy[j]
if tmpx < 0 or tmpx >= label.shape[0] or tmpy < 0 or tmpy >= label.shape[1]:
continue
if kernels[kernel_idx, tmpx, tmpy] == 0 or pred[tmpx, tmpy] > 0:
continue
que.push(pair[np.int16_t,np.int16_t](tmpx, tmpy))
pred[tmpx, tmpy] = cur_label
is_edge = False
if is_edge:
nxt_que.push(cur)
que, nxt_que = nxt_que, que
return pred
def pse(kernels, min_area):
kernel_num = kernels.shape[0]
label_num, label = cv2.connectedComponents(kernels[-1], connectivity=4)
return _pse(kernels[:-1], label, kernel_num, label_num, min_area)

View File

@@ -0,0 +1,14 @@
from distutils.core import setup, Extension
from Cython.Build import cythonize
import numpy
setup(ext_modules=cythonize(Extension(
'pse',
sources=['pse.pyx'],
language='c++',
include_dirs=[numpy.get_include()],
library_dirs=[],
libraries=[],
extra_compile_args=['-O3'],
extra_link_args=[]
)))

View File

@@ -0,0 +1,118 @@
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import cv2
import paddle
from paddle.nn import functional as F
from ppocr.postprocess.pse_postprocess.pse import pse
class PSEPostProcess(object):
"""
The post process for PSE.
"""
def __init__(self,
thresh=0.5,
box_thresh=0.85,
min_area=16,
box_type='quad',
scale=4,
**kwargs):
assert box_type in ['quad', 'poly'], 'Only quad and poly is supported'
self.thresh = thresh
self.box_thresh = box_thresh
self.min_area = min_area
self.box_type = box_type
self.scale = scale
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps']
if not isinstance(pred, paddle.Tensor):
pred = paddle.to_tensor(pred)
pred = F.interpolate(
pred, scale_factor=4 // self.scale, mode='bilinear')
score = F.sigmoid(pred[:, 0, :, :])
kernels = (pred > self.thresh).astype('float32')
text_mask = kernels[:, 0, :, :]
kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask
score = score.numpy()
kernels = kernels.numpy().astype(np.uint8)
boxes_batch = []
for batch_index in range(pred.shape[0]):
boxes, scores = self.boxes_from_bitmap(score[batch_index],
kernels[batch_index],
shape_list[batch_index])
boxes_batch.append({'points': boxes, 'scores': scores})
return boxes_batch
def boxes_from_bitmap(self, score, kernels, shape):
label = pse(kernels, self.min_area)
return self.generate_box(score, label, shape)
def generate_box(self, score, label, shape):
src_h, src_w, ratio_h, ratio_w = shape
label_num = np.max(label) + 1
boxes = []
scores = []
for i in range(1, label_num):
ind = label == i
points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1]
if points.shape[0] < self.min_area:
label[ind] = 0
continue
score_i = np.mean(score[ind])
if score_i < self.box_thresh:
label[ind] = 0
continue
if self.box_type == 'quad':
rect = cv2.minAreaRect(points)
bbox = cv2.boxPoints(rect)
elif self.box_type == 'poly':
box_height = np.max(points[:, 1]) + 10
box_width = np.max(points[:, 0]) + 10
mask = np.zeros((box_height, box_width), np.uint8)
mask[points[:, 1], points[:, 0]] = 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
bbox = np.squeeze(contours[0], 1)
else:
raise NotImplementedError
bbox[:, 0] = np.clip(np.round(bbox[:, 0] / ratio_w), 0, src_w)
bbox[:, 1] = np.clip(np.round(bbox[:, 1] / ratio_h), 0, src_h)
boxes.append(bbox)
scores.append(score_i)
return boxes, scores