mirror of
https://github.com/YaoFANGUK/video-subtitle-remover.git
synced 2026-02-22 09:44:41 +08:00
init
This commit is contained in:
155
backend/ppocr/losses/basic_loss.py
Normal file
155
backend/ppocr/losses/basic_loss.py
Normal file
@@ -0,0 +1,155 @@
|
||||
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||
#you may not use this file except in compliance with the License.
|
||||
#You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
#Unless required by applicable law or agreed to in writing, software
|
||||
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
#See the License for the specific language governing permissions and
|
||||
#limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
from paddle.nn import L1Loss
|
||||
from paddle.nn import MSELoss as L2Loss
|
||||
from paddle.nn import SmoothL1Loss
|
||||
|
||||
|
||||
class CELoss(nn.Layer):
|
||||
def __init__(self, epsilon=None):
|
||||
super().__init__()
|
||||
if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
|
||||
epsilon = None
|
||||
self.epsilon = epsilon
|
||||
|
||||
def _labelsmoothing(self, target, class_num):
|
||||
if target.shape[-1] != class_num:
|
||||
one_hot_target = F.one_hot(target, class_num)
|
||||
else:
|
||||
one_hot_target = target
|
||||
soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
|
||||
soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
|
||||
return soft_target
|
||||
|
||||
def forward(self, x, label):
|
||||
loss_dict = {}
|
||||
if self.epsilon is not None:
|
||||
class_num = x.shape[-1]
|
||||
label = self._labelsmoothing(label, class_num)
|
||||
x = -F.log_softmax(x, axis=-1)
|
||||
loss = paddle.sum(x * label, axis=-1)
|
||||
else:
|
||||
if label.shape[-1] == x.shape[-1]:
|
||||
label = F.softmax(label, axis=-1)
|
||||
soft_label = True
|
||||
else:
|
||||
soft_label = False
|
||||
loss = F.cross_entropy(x, label=label, soft_label=soft_label)
|
||||
return loss
|
||||
|
||||
|
||||
class KLJSLoss(object):
|
||||
def __init__(self, mode='kl'):
|
||||
assert mode in ['kl', 'js', 'KL', 'JS'
|
||||
], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
|
||||
self.mode = mode
|
||||
|
||||
def __call__(self, p1, p2, reduction="mean"):
|
||||
|
||||
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
|
||||
|
||||
if self.mode.lower() == "js":
|
||||
loss += paddle.multiply(
|
||||
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
|
||||
loss *= 0.5
|
||||
if reduction == "mean":
|
||||
loss = paddle.mean(loss, axis=[1, 2])
|
||||
elif reduction == "none" or reduction is None:
|
||||
return loss
|
||||
else:
|
||||
loss = paddle.sum(loss, axis=[1, 2])
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class DMLLoss(nn.Layer):
|
||||
"""
|
||||
DMLLoss
|
||||
"""
|
||||
|
||||
def __init__(self, act=None, use_log=False):
|
||||
super().__init__()
|
||||
if act is not None:
|
||||
assert act in ["softmax", "sigmoid"]
|
||||
if act == "softmax":
|
||||
self.act = nn.Softmax(axis=-1)
|
||||
elif act == "sigmoid":
|
||||
self.act = nn.Sigmoid()
|
||||
else:
|
||||
self.act = None
|
||||
|
||||
self.use_log = use_log
|
||||
self.jskl_loss = KLJSLoss(mode="js")
|
||||
|
||||
def _kldiv(self, x, target):
|
||||
eps = 1.0e-10
|
||||
loss = target * (paddle.log(target + eps) - x)
|
||||
# batch mean loss
|
||||
loss = paddle.sum(loss) / loss.shape[0]
|
||||
return loss
|
||||
|
||||
def forward(self, out1, out2):
|
||||
if self.act is not None:
|
||||
out1 = self.act(out1) + 1e-10
|
||||
out2 = self.act(out2) + 1e-10
|
||||
if self.use_log:
|
||||
# for recognition distillation, log is needed for feature map
|
||||
log_out1 = paddle.log(out1)
|
||||
log_out2 = paddle.log(out2)
|
||||
loss = (
|
||||
self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
|
||||
else:
|
||||
# for detection distillation log is not needed
|
||||
loss = self.jskl_loss(out1, out2)
|
||||
return loss
|
||||
|
||||
|
||||
class DistanceLoss(nn.Layer):
|
||||
"""
|
||||
DistanceLoss:
|
||||
mode: loss mode
|
||||
"""
|
||||
|
||||
def __init__(self, mode="l2", **kargs):
|
||||
super().__init__()
|
||||
assert mode in ["l1", "l2", "smooth_l1"]
|
||||
if mode == "l1":
|
||||
self.loss_func = nn.L1Loss(**kargs)
|
||||
elif mode == "l2":
|
||||
self.loss_func = nn.MSELoss(**kargs)
|
||||
elif mode == "smooth_l1":
|
||||
self.loss_func = nn.SmoothL1Loss(**kargs)
|
||||
|
||||
def forward(self, x, y):
|
||||
return self.loss_func(x, y)
|
||||
|
||||
|
||||
class LossFromOutput(nn.Layer):
|
||||
def __init__(self, key='loss', reduction='none'):
|
||||
super().__init__()
|
||||
self.key = key
|
||||
self.reduction = reduction
|
||||
|
||||
def forward(self, predicts, batch):
|
||||
loss = predicts[self.key]
|
||||
if self.reduction == 'mean':
|
||||
loss = paddle.mean(loss)
|
||||
elif self.reduction == 'sum':
|
||||
loss = paddle.sum(loss)
|
||||
return {'loss': loss}
|
||||
Reference in New Issue
Block a user