mirror of
https://github.com/duanhf2012/origin.git
synced 2026-02-03 22:45:13 +08:00
414 lines
12 KiB
Go
414 lines
12 KiB
Go
package queue
|
|
|
|
// minCapacity is the smallest capacity that deque may have. Must be power of 2
|
|
// for bitwise modulus: x % n == x & (n - 1).
|
|
const minCapacity = 16
|
|
|
|
// Deque represents a single instance of the deque data structure. A Deque
|
|
// instance contains items of the type sepcified by the type argument.
|
|
type Deque[T any] struct {
|
|
buf []T
|
|
head int
|
|
tail int
|
|
count int
|
|
minCap int
|
|
}
|
|
|
|
// New creates a new Deque, optionally setting the current and minimum capacity
|
|
// when non-zero values are given for these. The Deque instance returns
|
|
// operates on items of the type specified by the type argument. For example,
|
|
// to create a Deque that contains strings,
|
|
//
|
|
// stringDeque := deque.New[string]()
|
|
//
|
|
// To create a Deque with capacity to store 2048 ints without resizing, and
|
|
// that will not resize below space for 32 items when removing items:
|
|
// d := deque.New[int](2048, 32)
|
|
//
|
|
// To create a Deque that has not yet allocated memory, but after it does will
|
|
// never resize to have space for less than 64 items:
|
|
// d := deque.New[int](0, 64)
|
|
//
|
|
// Any size values supplied here are rounded up to the nearest power of 2.
|
|
func New[T any](size ...int) *Deque[T] {
|
|
var capacity, minimum int
|
|
if len(size) >= 1 {
|
|
capacity = size[0]
|
|
if len(size) >= 2 {
|
|
minimum = size[1]
|
|
}
|
|
}
|
|
|
|
minCap := minCapacity
|
|
for minCap < minimum {
|
|
minCap <<= 1
|
|
}
|
|
|
|
var buf []T
|
|
if capacity != 0 {
|
|
bufSize := minCap
|
|
for bufSize < capacity {
|
|
bufSize <<= 1
|
|
}
|
|
buf = make([]T, bufSize)
|
|
}
|
|
|
|
return &Deque[T]{
|
|
buf: buf,
|
|
minCap: minCap,
|
|
}
|
|
}
|
|
|
|
// Cap returns the current capacity of the Deque. If q is nil, q.Cap() is zero.
|
|
func (q *Deque[T]) Cap() int {
|
|
if q == nil {
|
|
return 0
|
|
}
|
|
return len(q.buf)
|
|
}
|
|
|
|
// Len returns the number of elements currently stored in the queue. If q is
|
|
// nil, q.Len() is zero.
|
|
func (q *Deque[T]) Len() int {
|
|
if q == nil {
|
|
return 0
|
|
}
|
|
return q.count
|
|
}
|
|
|
|
// PushBack appends an element to the back of the queue. Implements FIFO when
|
|
// elements are removed with PopFront(), and LIFO when elements are removed
|
|
// with PopBack().
|
|
func (q *Deque[T]) PushBack(elem T) {
|
|
q.growIfFull()
|
|
|
|
q.buf[q.tail] = elem
|
|
// Calculate new tail position.
|
|
q.tail = q.next(q.tail)
|
|
q.count++
|
|
}
|
|
|
|
// PushFront prepends an element to the front of the queue.
|
|
func (q *Deque[T]) PushFront(elem T) {
|
|
q.growIfFull()
|
|
|
|
// Calculate new head position.
|
|
q.head = q.prev(q.head)
|
|
q.buf[q.head] = elem
|
|
q.count++
|
|
}
|
|
|
|
// PopFront removes and returns the element from the front of the queue.
|
|
// Implements FIFO when used with PushBack(). If the queue is empty, the call
|
|
// panics.
|
|
func (q *Deque[T]) PopFront() T {
|
|
if q.count <= 0 {
|
|
panic("deque: PopFront() called on empty queue")
|
|
}
|
|
ret := q.buf[q.head]
|
|
var zero T
|
|
q.buf[q.head] = zero
|
|
// Calculate new head position.
|
|
q.head = q.next(q.head)
|
|
q.count--
|
|
|
|
q.shrinkIfExcess()
|
|
return ret
|
|
}
|
|
|
|
// PopBack removes and returns the element from the back of the queue.
|
|
// Implements LIFO when used with PushBack(). If the queue is empty, the call
|
|
// panics.
|
|
func (q *Deque[T]) PopBack() T {
|
|
if q.count <= 0 {
|
|
panic("deque: PopBack() called on empty queue")
|
|
}
|
|
|
|
// Calculate new tail position
|
|
q.tail = q.prev(q.tail)
|
|
|
|
// Remove value at tail.
|
|
ret := q.buf[q.tail]
|
|
var zero T
|
|
q.buf[q.tail] = zero
|
|
q.count--
|
|
|
|
q.shrinkIfExcess()
|
|
return ret
|
|
}
|
|
|
|
// Front returns the element at the front of the queue. This is the element
|
|
// that would be returned by PopFront(). This call panics if the queue is
|
|
// empty.
|
|
func (q *Deque[T]) Front() T {
|
|
if q.count <= 0 {
|
|
panic("deque: Front() called when empty")
|
|
}
|
|
return q.buf[q.head]
|
|
}
|
|
|
|
// Back returns the element at the back of the queue. This is the element that
|
|
// would be returned by PopBack(). This call panics if the queue is empty.
|
|
func (q *Deque[T]) Back() T {
|
|
if q.count <= 0 {
|
|
panic("deque: Back() called when empty")
|
|
}
|
|
return q.buf[q.prev(q.tail)]
|
|
}
|
|
|
|
// At returns the element at index i in the queue without removing the element
|
|
// from the queue. This method accepts only non-negative index values. At(0)
|
|
// refers to the first element and is the same as Front(). At(Len()-1) refers
|
|
// to the last element and is the same as Back(). If the index is invalid, the
|
|
// call panics.
|
|
//
|
|
// The purpose of At is to allow Deque to serve as a more general purpose
|
|
// circular buffer, where items are only added to and removed from the ends of
|
|
// the deque, but may be read from any place within the deque. Consider the
|
|
// case of a fixed-size circular log buffer: A new entry is pushed onto one end
|
|
// and when full the oldest is popped from the other end. All the log entries
|
|
// in the buffer must be readable without altering the buffer contents.
|
|
func (q *Deque[T]) At(i int) T {
|
|
if i < 0 || i >= q.count {
|
|
panic("deque: At() called with index out of range")
|
|
}
|
|
// bitwise modulus
|
|
return q.buf[(q.head+i)&(len(q.buf)-1)]
|
|
}
|
|
|
|
// Set puts the element at index i in the queue. Set shares the same purpose
|
|
// than At() but perform the opposite operation. The index i is the same index
|
|
// defined by At(). If the index is invalid, the call panics.
|
|
func (q *Deque[T]) Set(i int, elem T) {
|
|
if i < 0 || i >= q.count {
|
|
panic("deque: Set() called with index out of range")
|
|
}
|
|
// bitwise modulus
|
|
q.buf[(q.head+i)&(len(q.buf)-1)] = elem
|
|
}
|
|
|
|
// Clear removes all elements from the queue, but retains the current capacity.
|
|
// This is useful when repeatedly reusing the queue at high frequency to avoid
|
|
// GC during reuse. The queue will not be resized smaller as long as items are
|
|
// only added. Only when items are removed is the queue subject to getting
|
|
// resized smaller.
|
|
func (q *Deque[T]) Clear() {
|
|
// bitwise modulus
|
|
modBits := len(q.buf) - 1
|
|
var zero T
|
|
for h := q.head; h != q.tail; h = (h + 1) & modBits {
|
|
q.buf[h] = zero
|
|
}
|
|
q.head = 0
|
|
q.tail = 0
|
|
q.count = 0
|
|
}
|
|
|
|
// Rotate rotates the deque n steps front-to-back. If n is negative, rotates
|
|
// back-to-front. Having Deque provide Rotate() avoids resizing that could
|
|
// happen if implementing rotation using only Pop and Push methods. If q.Len()
|
|
// is one or less, or q is nil, then Rotate does nothing.
|
|
func (q *Deque[T]) Rotate(n int) {
|
|
if q.Len() <= 1 {
|
|
return
|
|
}
|
|
// Rotating a multiple of q.count is same as no rotation.
|
|
n %= q.count
|
|
if n == 0 {
|
|
return
|
|
}
|
|
|
|
modBits := len(q.buf) - 1
|
|
// If no empty space in buffer, only move head and tail indexes.
|
|
if q.head == q.tail {
|
|
// Calculate new head and tail using bitwise modulus.
|
|
q.head = (q.head + n) & modBits
|
|
q.tail = q.head
|
|
return
|
|
}
|
|
|
|
var zero T
|
|
|
|
if n < 0 {
|
|
// Rotate back to front.
|
|
for ; n < 0; n++ {
|
|
// Calculate new head and tail using bitwise modulus.
|
|
q.head = (q.head - 1) & modBits
|
|
q.tail = (q.tail - 1) & modBits
|
|
// Put tail value at head and remove value at tail.
|
|
q.buf[q.head] = q.buf[q.tail]
|
|
q.buf[q.tail] = zero
|
|
}
|
|
return
|
|
}
|
|
|
|
// Rotate front to back.
|
|
for ; n > 0; n-- {
|
|
// Put head value at tail and remove value at head.
|
|
q.buf[q.tail] = q.buf[q.head]
|
|
q.buf[q.head] = zero
|
|
// Calculate new head and tail using bitwise modulus.
|
|
q.head = (q.head + 1) & modBits
|
|
q.tail = (q.tail + 1) & modBits
|
|
}
|
|
}
|
|
|
|
// Index returns the index into the Deque of the first item satisfying f(item),
|
|
// or -1 if none do. If q is nil, then -1 is always returned. Search is linear
|
|
// starting with index 0.
|
|
func (q *Deque[T]) Index(f func(T) bool) int {
|
|
if q.Len() > 0 {
|
|
modBits := len(q.buf) - 1
|
|
for i := 0; i < q.count; i++ {
|
|
if f(q.buf[(q.head+i)&modBits]) {
|
|
return i
|
|
}
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// RIndex is the same as Index, but searches from Back to Front. The index
|
|
// returned is from Front to Back, where index 0 is the index of the item
|
|
// returned by Front().
|
|
func (q *Deque[T]) RIndex(f func(T) bool) int {
|
|
if q.Len() > 0 {
|
|
modBits := len(q.buf) - 1
|
|
for i := q.count - 1; i >= 0; i-- {
|
|
if f(q.buf[(q.head+i)&modBits]) {
|
|
return i
|
|
}
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// Insert is used to insert an element into the middle of the queue, before the
|
|
// element at the specified index. Insert(0,e) is the same as PushFront(e) and
|
|
// Insert(Len(),e) is the same as PushBack(e). Accepts only non-negative index
|
|
// values, and panics if index is out of range.
|
|
//
|
|
// Important: Deque is optimized for O(1) operations at the ends of the queue,
|
|
// not for operations in the the middle. Complexity of this function is
|
|
// constant plus linear in the lesser of the distances between the index and
|
|
// either of the ends of the queue.
|
|
func (q *Deque[T]) Insert(at int, item T) {
|
|
if at < 0 || at > q.count {
|
|
panic("deque: Insert() called with index out of range")
|
|
}
|
|
if at*2 < q.count {
|
|
q.PushFront(item)
|
|
front := q.head
|
|
for i := 0; i < at; i++ {
|
|
next := q.next(front)
|
|
q.buf[front], q.buf[next] = q.buf[next], q.buf[front]
|
|
front = next
|
|
}
|
|
return
|
|
}
|
|
swaps := q.count - at
|
|
q.PushBack(item)
|
|
back := q.prev(q.tail)
|
|
for i := 0; i < swaps; i++ {
|
|
prev := q.prev(back)
|
|
q.buf[back], q.buf[prev] = q.buf[prev], q.buf[back]
|
|
back = prev
|
|
}
|
|
}
|
|
|
|
// Remove removes and returns an element from the middle of the queue, at the
|
|
// specified index. Remove(0) is the same as PopFront() and Remove(Len()-1) is
|
|
// the same as PopBack(). Accepts only non-negative index values, and panics if
|
|
// index is out of range.
|
|
//
|
|
// Important: Deque is optimized for O(1) operations at the ends of the queue,
|
|
// not for operations in the the middle. Complexity of this function is
|
|
// constant plus linear in the lesser of the distances between the index and
|
|
// either of the ends of the queue.
|
|
func (q *Deque[T]) Remove(at int) T {
|
|
if at < 0 || at >= q.Len() {
|
|
panic("deque: Remove() called with index out of range")
|
|
}
|
|
|
|
rm := (q.head + at) & (len(q.buf) - 1)
|
|
if at*2 < q.count {
|
|
for i := 0; i < at; i++ {
|
|
prev := q.prev(rm)
|
|
q.buf[prev], q.buf[rm] = q.buf[rm], q.buf[prev]
|
|
rm = prev
|
|
}
|
|
return q.PopFront()
|
|
}
|
|
swaps := q.count - at - 1
|
|
for i := 0; i < swaps; i++ {
|
|
next := q.next(rm)
|
|
q.buf[rm], q.buf[next] = q.buf[next], q.buf[rm]
|
|
rm = next
|
|
}
|
|
return q.PopBack()
|
|
}
|
|
|
|
// SetMinCapacity sets a minimum capacity of 2^minCapacityExp. If the value of
|
|
// the minimum capacity is less than or equal to the minimum allowed, then
|
|
// capacity is set to the minimum allowed. This may be called at anytime to set
|
|
// a new minimum capacity.
|
|
//
|
|
// Setting a larger minimum capacity may be used to prevent resizing when the
|
|
// number of stored items changes frequently across a wide range.
|
|
func (q *Deque[T]) SetMinCapacity(minCapacityExp uint) {
|
|
if 1<<minCapacityExp > minCapacity {
|
|
q.minCap = 1 << minCapacityExp
|
|
} else {
|
|
q.minCap = minCapacity
|
|
}
|
|
}
|
|
|
|
// prev returns the previous buffer position wrapping around buffer.
|
|
func (q *Deque[T]) prev(i int) int {
|
|
return (i - 1) & (len(q.buf) - 1) // bitwise modulus
|
|
}
|
|
|
|
// next returns the next buffer position wrapping around buffer.
|
|
func (q *Deque[T]) next(i int) int {
|
|
return (i + 1) & (len(q.buf) - 1) // bitwise modulus
|
|
}
|
|
|
|
// growIfFull resizes up if the buffer is full.
|
|
func (q *Deque[T]) growIfFull() {
|
|
if q.count != len(q.buf) {
|
|
return
|
|
}
|
|
if len(q.buf) == 0 {
|
|
if q.minCap == 0 {
|
|
q.minCap = minCapacity
|
|
}
|
|
q.buf = make([]T, q.minCap)
|
|
return
|
|
}
|
|
q.resize()
|
|
}
|
|
|
|
// shrinkIfExcess resize down if the buffer 1/4 full.
|
|
func (q *Deque[T]) shrinkIfExcess() {
|
|
if len(q.buf) > q.minCap && (q.count<<2) == len(q.buf) {
|
|
q.resize()
|
|
}
|
|
}
|
|
|
|
// resize resizes the deque to fit exactly twice its current contents. This is
|
|
// used to grow the queue when it is full, and also to shrink it when it is
|
|
// only a quarter full.
|
|
func (q *Deque[T]) resize() {
|
|
newBuf := make([]T, q.count<<1)
|
|
if q.tail > q.head {
|
|
copy(newBuf, q.buf[q.head:q.tail])
|
|
} else {
|
|
n := copy(newBuf, q.buf[q.head:])
|
|
copy(newBuf[n:], q.buf[:q.tail])
|
|
}
|
|
|
|
q.head = 0
|
|
q.tail = q.count
|
|
q.buf = newBuf
|
|
}
|