origin 游戏服务器引擎简介 ================== origin 是一个由 Go 语言(golang)编写的分布式开源游戏服务器引擎。origin适用于各类游戏服务器的开发,包括 H5(HTML5)游戏服务器。 origin 解决的问题: * origin总体设计如go语言设计一样,总是尽可能的提供简洁和易用的模式,快速开发。 * 能够根据业务需求快速并灵活的制定服务器架构。 * 利用多核优势,将不同的service配置到不同的node,并能高效的协同工作。 * 将整个引擎抽象三大对象,node,service,module。通过统一的组合模型管理游戏中各功能模块的关系。 * 有丰富并健壮的工具库。 Hello world! --------------- 下面我们来一步步的建立origin服务器,先下载[origin引擎](https://github.com/duanhf2012/origin "origin引擎"),或者使用如下命令: ```go go get -v -u github.com/duanhf2012/origin ``` 于是下载到GOPATH环境目录中,在src中加入main.go,内容如下: ```go package main import ( "github.com/duanhf2012/origin/node" ) func main() { node.Start() } ``` 一个origin进程需要创建一个node对象,Start开始运行。您也可以直接下载origin引擎示例: ``` go get -v -u github.com/duanhf2012/originserver ``` 本文所有的说明都是基于该示例为主。 origin引擎三大对象关系 --------------- * Node: 可以认为每一个Node代表着一个origin进程 * Service:一个独立的服务可以认为是一个大的功能模块,他是Node的子集,创建完成并安装Node对象中。服务可以支持对外部RPC等功能。 * Module: 这是origin最小对象单元,强烈建议所有的业务模块都划分成各个小的Module组合,origin引擎将监控所有服务与Module运行状态,例如可以监控它们的慢处理和死循环函数。Module可以建立树状关系。Service本身也是Module的类型。 origin集群核心配置文件在config的cluster目录下,在cluster下有子网目录,如github.com/duanhf2012/originserver的config/cluster目录下有subnet目录,表示子网名为subnet,可以新加多个子网的目录配置。子网与子网间是隔离的,后续将支持子网间通信规则,origin集群配置以子网的模式配置,在每个子网下配置多个Node服务器,子网在应对复杂的系统时可以应用到各个子系统,方便每个子系统的隔离。在示例的subnet目录中有cluster.json与service.json配置: cluster.json如下: --------------- ``` { "NodeList":[ { "NodeId": 1, "ListenAddr":"127.0.0.1:8001", "NodeName": "Node_Test1", "remark":"//以_打头的,表示只在本机进程,不对整个子网开发", "ServiceList": ["TestService1","TestService2","TestServiceCall","GateService","_TcpService","HttpService","WSService"] }, { "NodeId": 2, "ListenAddr":"127.0.0.1:8002", "NodeName": "Node_Test1", "remark":"//以_打头的,表示只在本机进程,不对整个子网开发", "ServiceList": ["TestService1","TestService2","TestServiceCall","GateService","TcpService","HttpService","WSService"] } ] ``` --------------- 以上配置了两个结点服务器程序: * NodeId: 表示origin程序的结点Id标识,不允许重复。 * ListenAddr:Rpc通信服务的监听地址 * NodeName:结点名称 * remark:备注,可选项 * ServiceList:该Node将安装的服务列表 --------------- 在启动程序命令program start nodeid=1中nodeid就是根据该配置装载服务。 service.json如下: --------------- ``` { "Service":{ "HttpService":{ "ListenAddr":"0.0.0.0:9402", "ReadTimeout":10000, "WriteTimeout":10000, "ProcessTimeout":10000, "CAFile":[ { "Certfile":"", "Keyfile":"" } ] }, "TcpService":{ "ListenAddr":"0.0.0.0:9030", "MaxConnNum":3000, "PendingWriteNum":10000, "LittleEndian":false, "MinMsgLen":4, "MaxMsgLen":65535 }, "WSService":{ "ListenAddr":"0.0.0.0:9031", "MaxConnNum":3000, "PendingWriteNum":10000, "MaxMsgLen":65535 } }, "NodeService":[ { "NodeId":1, "TcpService":{ "ListenAddr":"0.0.0.0:9830", "MaxConnNum":3000, "PendingWriteNum":10000, "LittleEndian":false, "MinMsgLen":4, "MaxMsgLen":65535 }, "WSService":{ "ListenAddr":"0.0.0.0:9031", "MaxConnNum":3000, "PendingWriteNum":10000, "MaxMsgLen":65535 } }, { "NodeId":2, "TcpService":{ "ListenAddr":"0.0.0.0:9030", "MaxConnNum":3000, "PendingWriteNum":10000, "LittleEndian":false, "MinMsgLen":4, "MaxMsgLen":65535 }, "WSService":{ "ListenAddr":"0.0.0.0:9031", "MaxConnNum":3000, "PendingWriteNum":10000, "MaxMsgLen":65535 } } ] } ``` --------------- 以上配置分为两个部分:Service与NodeService,NodeService中配置的对应结点中服务的配置,如果启动程序中根据nodeid查找该域的对应的服务,如果找不到时,从Service公共部分查找。 **HttpService配置** * ListenAddr:Http监听地址 * ReadTimeout:读网络超时毫秒 * WriteTimeout:写网络超时毫秒 * ProcessTimeout: 处理超时毫秒 * CAFile: 证书文件,如果您的服务器通过web服务器代理配置https可以忽略该配置 **TcpService配置** * ListenAddr: 监听地址 * MaxConnNum: 允许最大连接数 * PendingWriteNum:发送网络队列最大数量 * LittleEndian:是否小端 * MinMsgLen:包最小长度 * MaxMsgLen:包最大长度 **WSService配置** * ListenAddr: 监听地址 * MaxConnNum: 允许最大连接数 * PendingWriteNum:发送网络队列最大数量 * MaxMsgLen:包最大长度 --------------- 第一章:origin基础: --------------- 查看github.com/duanhf2012/originserver中的simple_service中新建两个服务,分别是TestService1.go与CTestService2.go。 TestService1.go如下: ``` package simple_service import ( "github.com/duanhf2012/origin/node" "github.com/duanhf2012/origin/service" ) //模块加载时自动安装TestService1服务 func init(){ node.Setup(&TestService1{}) } //新建自定义服务TestService1 type TestService1 struct { //所有的自定义服务必需加入service.Service基服务 //那么该自定义服务将有各种功能特性 //例如: Rpc,事件驱动,定时器等 service.Service } //服务初始化函数,在安装服务时,服务将自动调用OnInit函数 func (slf *TestService1) OnInit() error { return nil } ``` TestService1.go如下: ``` import ( "github.com/duanhf2012/origin/node" "github.com/duanhf2012/origin/service" ) func init(){ node.Setup(&TestService2{}) } type TestService2 struct { service.Service } func (slf *TestService2) OnInit() error { return nil } ``` * main.go运行代码 ```go package main import ( "github.com/duanhf2012/origin/node" //导入simple_service模块 _"orginserver/simple_service" ) func main(){ node.Start() } ``` * config/cluster/subnet/cluster.json如下: ``` { "NodeList":[ { "NodeId": 1, "ListenAddr":"127.0.0.1:8001", "NodeName": "Node_Test1", "remark":"//以_打头的,表示只在本机进程,不对整个子网开发", "ServiceList": ["TestService1","TestService2"] } ] } ``` 编译后运行结果如下: ``` #originserver start nodeid=1 TestService1 OnInit. TestService2 OnInit. ``` 第二章:Service中常用功能: --------------- 定时器: --------------- 在开发中最常用的功能有定时任务,origin提供两种定时方式: 一种AfterFunc函数,可以间隔一定时间触发回调,如下: ``` func (slf *TestService2) OnInit() error { fmt.Printf("TestService2 OnInit.\n") slf.AfterFunc(time.Second*1,slf.OnSecondTick) return nil } func (slf *TestService2) OnSecondTick(){ fmt.Printf("tick.\n") slf.AfterFunc(time.Second*1,slf.OnSecondTick) } ``` 此时日志可以看到每隔1秒钟会print一次"tick.",如果下次还需要触发,需要重新设置定时器 另一种方式是类似Linux系统的crontab命令,使用如下: ``` func (slf *TestService2) OnInit() error { fmt.Printf("TestService2 OnInit.\n") //crontab模式定时触发 //NewCronExpr的参数分别代表:Seconds Minutes Hours DayOfMonth Month DayOfWeek //以下为每换分钟时触发 cron,_:=timer.NewCronExpr("0 * * * * *") slf.CronFunc(cron,slf.OnCron) return nil } func (slf *TestService2) OnCron(){ fmt.Printf(":A minute passed!\n") } ``` 以上运行结果每换分钟时打印:A minute passed! 打开多协程模式: --------------- 在origin引擎设计中,所有的服务是单协程模式,这样在编写逻辑代码时,不用考虑线程安全问题。极大的减少开发难度,但某些开发场景下不用考虑这个问题,而且需要并发执行的情况,比如,某服务只处理数据库操作控制,而数据库处理中发生阻塞等待的问题,因为一个协程,该服务接受的数据库操作只能是一个 一个的排队处理,效率过低。于是可以打开此模式指定处理协程数,代码如下: ``` func (slf *TestService1) OnInit() error { fmt.Printf("TestService1 OnInit.\n") //打开多线程处理模式,10个协程并发处理 slf.SetGoRouterNum(10) return nil } ``` 为了 性能监控功能: --------------- 我们在开发一个大型的系统时,经常由于一些代码质量的原因,产生处理过慢或者死循环的产生,该功能可以被监测到。使用方法如下: ``` func (slf *TestService1) OnInit() error { fmt.Printf("TestService1 OnInit.\n") //打开性能分析工具 slf.OpenProfiler() //监控超过1秒的慢处理 slf.GetProfiler().SetOverTime(time.Second*1) //监控超过10秒的超慢处理,您可以用它来定位是否存在死循环 //比如以下设置10秒,我的应用中是不会发生超过10秒的一次函数调用 //所以设置为10秒。 slf.GetProfiler().SetMaxOverTime(time.Second*10) slf.AfterFunc(time.Second*2,slf.Loop) //打开多线程处理模式,10个协程并发处理 //slf.SetGoRouterNum(10) return nil } func (slf *TestService1) Loop(){ for { time.Sleep(time.Second*1) } } func main(){ //打开性能分析报告功能,并设置10秒汇报一次 node.OpenProfilerReport(time.Second*10) node.Start() } ``` 上面通过GetProfiler().SetOverTime与slf.GetProfiler().SetMaxOverTimer设置监控时间 并在main.go中,打开了性能报告器,以每10秒汇报一次,因为上面的例子中,定时器是有死循环,所以可以得到以下报告: 2020/04/22 17:53:30 profiler.go:179: [release] Profiler report tag TestService1: process count 0,take time 0 Milliseconds,average 0 Milliseconds/per. too slow process:Timer_orginserver/simple_service.(*TestService1).Loop-fm is take 38003 Milliseconds 直接帮助找到TestService1服务中的Loop函数