mirror of
https://github.com/duanhf2012/origin.git
synced 2026-02-04 06:54:45 +08:00
新增异步函数执行功能
This commit is contained in:
413
util/queue/deque.go
Normal file
413
util/queue/deque.go
Normal file
@@ -0,0 +1,413 @@
|
||||
package queue
|
||||
|
||||
// minCapacity is the smallest capacity that deque may have. Must be power of 2
|
||||
// for bitwise modulus: x % n == x & (n - 1).
|
||||
const minCapacity = 16
|
||||
|
||||
// Deque represents a single instance of the deque data structure. A Deque
|
||||
// instance contains items of the type sepcified by the type argument.
|
||||
type Deque[T any] struct {
|
||||
buf []T
|
||||
head int
|
||||
tail int
|
||||
count int
|
||||
minCap int
|
||||
}
|
||||
|
||||
// New creates a new Deque, optionally setting the current and minimum capacity
|
||||
// when non-zero values are given for these. The Deque instance returns
|
||||
// operates on items of the type specified by the type argument. For example,
|
||||
// to create a Deque that contains strings,
|
||||
//
|
||||
// stringDeque := deque.New[string]()
|
||||
//
|
||||
// To create a Deque with capacity to store 2048 ints without resizing, and
|
||||
// that will not resize below space for 32 items when removing items:
|
||||
// d := deque.New[int](2048, 32)
|
||||
//
|
||||
// To create a Deque that has not yet allocated memory, but after it does will
|
||||
// never resize to have space for less than 64 items:
|
||||
// d := deque.New[int](0, 64)
|
||||
//
|
||||
// Any size values supplied here are rounded up to the nearest power of 2.
|
||||
func New[T any](size ...int) *Deque[T] {
|
||||
var capacity, minimum int
|
||||
if len(size) >= 1 {
|
||||
capacity = size[0]
|
||||
if len(size) >= 2 {
|
||||
minimum = size[1]
|
||||
}
|
||||
}
|
||||
|
||||
minCap := minCapacity
|
||||
for minCap < minimum {
|
||||
minCap <<= 1
|
||||
}
|
||||
|
||||
var buf []T
|
||||
if capacity != 0 {
|
||||
bufSize := minCap
|
||||
for bufSize < capacity {
|
||||
bufSize <<= 1
|
||||
}
|
||||
buf = make([]T, bufSize)
|
||||
}
|
||||
|
||||
return &Deque[T]{
|
||||
buf: buf,
|
||||
minCap: minCap,
|
||||
}
|
||||
}
|
||||
|
||||
// Cap returns the current capacity of the Deque. If q is nil, q.Cap() is zero.
|
||||
func (q *Deque[T]) Cap() int {
|
||||
if q == nil {
|
||||
return 0
|
||||
}
|
||||
return len(q.buf)
|
||||
}
|
||||
|
||||
// Len returns the number of elements currently stored in the queue. If q is
|
||||
// nil, q.Len() is zero.
|
||||
func (q *Deque[T]) Len() int {
|
||||
if q == nil {
|
||||
return 0
|
||||
}
|
||||
return q.count
|
||||
}
|
||||
|
||||
// PushBack appends an element to the back of the queue. Implements FIFO when
|
||||
// elements are removed with PopFront(), and LIFO when elements are removed
|
||||
// with PopBack().
|
||||
func (q *Deque[T]) PushBack(elem T) {
|
||||
q.growIfFull()
|
||||
|
||||
q.buf[q.tail] = elem
|
||||
// Calculate new tail position.
|
||||
q.tail = q.next(q.tail)
|
||||
q.count++
|
||||
}
|
||||
|
||||
// PushFront prepends an element to the front of the queue.
|
||||
func (q *Deque[T]) PushFront(elem T) {
|
||||
q.growIfFull()
|
||||
|
||||
// Calculate new head position.
|
||||
q.head = q.prev(q.head)
|
||||
q.buf[q.head] = elem
|
||||
q.count++
|
||||
}
|
||||
|
||||
// PopFront removes and returns the element from the front of the queue.
|
||||
// Implements FIFO when used with PushBack(). If the queue is empty, the call
|
||||
// panics.
|
||||
func (q *Deque[T]) PopFront() T {
|
||||
if q.count <= 0 {
|
||||
panic("deque: PopFront() called on empty queue")
|
||||
}
|
||||
ret := q.buf[q.head]
|
||||
var zero T
|
||||
q.buf[q.head] = zero
|
||||
// Calculate new head position.
|
||||
q.head = q.next(q.head)
|
||||
q.count--
|
||||
|
||||
q.shrinkIfExcess()
|
||||
return ret
|
||||
}
|
||||
|
||||
// PopBack removes and returns the element from the back of the queue.
|
||||
// Implements LIFO when used with PushBack(). If the queue is empty, the call
|
||||
// panics.
|
||||
func (q *Deque[T]) PopBack() T {
|
||||
if q.count <= 0 {
|
||||
panic("deque: PopBack() called on empty queue")
|
||||
}
|
||||
|
||||
// Calculate new tail position
|
||||
q.tail = q.prev(q.tail)
|
||||
|
||||
// Remove value at tail.
|
||||
ret := q.buf[q.tail]
|
||||
var zero T
|
||||
q.buf[q.tail] = zero
|
||||
q.count--
|
||||
|
||||
q.shrinkIfExcess()
|
||||
return ret
|
||||
}
|
||||
|
||||
// Front returns the element at the front of the queue. This is the element
|
||||
// that would be returned by PopFront(). This call panics if the queue is
|
||||
// empty.
|
||||
func (q *Deque[T]) Front() T {
|
||||
if q.count <= 0 {
|
||||
panic("deque: Front() called when empty")
|
||||
}
|
||||
return q.buf[q.head]
|
||||
}
|
||||
|
||||
// Back returns the element at the back of the queue. This is the element that
|
||||
// would be returned by PopBack(). This call panics if the queue is empty.
|
||||
func (q *Deque[T]) Back() T {
|
||||
if q.count <= 0 {
|
||||
panic("deque: Back() called when empty")
|
||||
}
|
||||
return q.buf[q.prev(q.tail)]
|
||||
}
|
||||
|
||||
// At returns the element at index i in the queue without removing the element
|
||||
// from the queue. This method accepts only non-negative index values. At(0)
|
||||
// refers to the first element and is the same as Front(). At(Len()-1) refers
|
||||
// to the last element and is the same as Back(). If the index is invalid, the
|
||||
// call panics.
|
||||
//
|
||||
// The purpose of At is to allow Deque to serve as a more general purpose
|
||||
// circular buffer, where items are only added to and removed from the ends of
|
||||
// the deque, but may be read from any place within the deque. Consider the
|
||||
// case of a fixed-size circular log buffer: A new entry is pushed onto one end
|
||||
// and when full the oldest is popped from the other end. All the log entries
|
||||
// in the buffer must be readable without altering the buffer contents.
|
||||
func (q *Deque[T]) At(i int) T {
|
||||
if i < 0 || i >= q.count {
|
||||
panic("deque: At() called with index out of range")
|
||||
}
|
||||
// bitwise modulus
|
||||
return q.buf[(q.head+i)&(len(q.buf)-1)]
|
||||
}
|
||||
|
||||
// Set puts the element at index i in the queue. Set shares the same purpose
|
||||
// than At() but perform the opposite operation. The index i is the same index
|
||||
// defined by At(). If the index is invalid, the call panics.
|
||||
func (q *Deque[T]) Set(i int, elem T) {
|
||||
if i < 0 || i >= q.count {
|
||||
panic("deque: Set() called with index out of range")
|
||||
}
|
||||
// bitwise modulus
|
||||
q.buf[(q.head+i)&(len(q.buf)-1)] = elem
|
||||
}
|
||||
|
||||
// Clear removes all elements from the queue, but retains the current capacity.
|
||||
// This is useful when repeatedly reusing the queue at high frequency to avoid
|
||||
// GC during reuse. The queue will not be resized smaller as long as items are
|
||||
// only added. Only when items are removed is the queue subject to getting
|
||||
// resized smaller.
|
||||
func (q *Deque[T]) Clear() {
|
||||
// bitwise modulus
|
||||
modBits := len(q.buf) - 1
|
||||
var zero T
|
||||
for h := q.head; h != q.tail; h = (h + 1) & modBits {
|
||||
q.buf[h] = zero
|
||||
}
|
||||
q.head = 0
|
||||
q.tail = 0
|
||||
q.count = 0
|
||||
}
|
||||
|
||||
// Rotate rotates the deque n steps front-to-back. If n is negative, rotates
|
||||
// back-to-front. Having Deque provide Rotate() avoids resizing that could
|
||||
// happen if implementing rotation using only Pop and Push methods. If q.Len()
|
||||
// is one or less, or q is nil, then Rotate does nothing.
|
||||
func (q *Deque[T]) Rotate(n int) {
|
||||
if q.Len() <= 1 {
|
||||
return
|
||||
}
|
||||
// Rotating a multiple of q.count is same as no rotation.
|
||||
n %= q.count
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
modBits := len(q.buf) - 1
|
||||
// If no empty space in buffer, only move head and tail indexes.
|
||||
if q.head == q.tail {
|
||||
// Calculate new head and tail using bitwise modulus.
|
||||
q.head = (q.head + n) & modBits
|
||||
q.tail = q.head
|
||||
return
|
||||
}
|
||||
|
||||
var zero T
|
||||
|
||||
if n < 0 {
|
||||
// Rotate back to front.
|
||||
for ; n < 0; n++ {
|
||||
// Calculate new head and tail using bitwise modulus.
|
||||
q.head = (q.head - 1) & modBits
|
||||
q.tail = (q.tail - 1) & modBits
|
||||
// Put tail value at head and remove value at tail.
|
||||
q.buf[q.head] = q.buf[q.tail]
|
||||
q.buf[q.tail] = zero
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Rotate front to back.
|
||||
for ; n > 0; n-- {
|
||||
// Put head value at tail and remove value at head.
|
||||
q.buf[q.tail] = q.buf[q.head]
|
||||
q.buf[q.head] = zero
|
||||
// Calculate new head and tail using bitwise modulus.
|
||||
q.head = (q.head + 1) & modBits
|
||||
q.tail = (q.tail + 1) & modBits
|
||||
}
|
||||
}
|
||||
|
||||
// Index returns the index into the Deque of the first item satisfying f(item),
|
||||
// or -1 if none do. If q is nil, then -1 is always returned. Search is linear
|
||||
// starting with index 0.
|
||||
func (q *Deque[T]) Index(f func(T) bool) int {
|
||||
if q.Len() > 0 {
|
||||
modBits := len(q.buf) - 1
|
||||
for i := 0; i < q.count; i++ {
|
||||
if f(q.buf[(q.head+i)&modBits]) {
|
||||
return i
|
||||
}
|
||||
}
|
||||
}
|
||||
return -1
|
||||
}
|
||||
|
||||
// RIndex is the same as Index, but searches from Back to Front. The index
|
||||
// returned is from Front to Back, where index 0 is the index of the item
|
||||
// returned by Front().
|
||||
func (q *Deque[T]) RIndex(f func(T) bool) int {
|
||||
if q.Len() > 0 {
|
||||
modBits := len(q.buf) - 1
|
||||
for i := q.count - 1; i >= 0; i-- {
|
||||
if f(q.buf[(q.head+i)&modBits]) {
|
||||
return i
|
||||
}
|
||||
}
|
||||
}
|
||||
return -1
|
||||
}
|
||||
|
||||
// Insert is used to insert an element into the middle of the queue, before the
|
||||
// element at the specified index. Insert(0,e) is the same as PushFront(e) and
|
||||
// Insert(Len(),e) is the same as PushBack(e). Accepts only non-negative index
|
||||
// values, and panics if index is out of range.
|
||||
//
|
||||
// Important: Deque is optimized for O(1) operations at the ends of the queue,
|
||||
// not for operations in the the middle. Complexity of this function is
|
||||
// constant plus linear in the lesser of the distances between the index and
|
||||
// either of the ends of the queue.
|
||||
func (q *Deque[T]) Insert(at int, item T) {
|
||||
if at < 0 || at > q.count {
|
||||
panic("deque: Insert() called with index out of range")
|
||||
}
|
||||
if at*2 < q.count {
|
||||
q.PushFront(item)
|
||||
front := q.head
|
||||
for i := 0; i < at; i++ {
|
||||
next := q.next(front)
|
||||
q.buf[front], q.buf[next] = q.buf[next], q.buf[front]
|
||||
front = next
|
||||
}
|
||||
return
|
||||
}
|
||||
swaps := q.count - at
|
||||
q.PushBack(item)
|
||||
back := q.prev(q.tail)
|
||||
for i := 0; i < swaps; i++ {
|
||||
prev := q.prev(back)
|
||||
q.buf[back], q.buf[prev] = q.buf[prev], q.buf[back]
|
||||
back = prev
|
||||
}
|
||||
}
|
||||
|
||||
// Remove removes and returns an element from the middle of the queue, at the
|
||||
// specified index. Remove(0) is the same as PopFront() and Remove(Len()-1) is
|
||||
// the same as PopBack(). Accepts only non-negative index values, and panics if
|
||||
// index is out of range.
|
||||
//
|
||||
// Important: Deque is optimized for O(1) operations at the ends of the queue,
|
||||
// not for operations in the the middle. Complexity of this function is
|
||||
// constant plus linear in the lesser of the distances between the index and
|
||||
// either of the ends of the queue.
|
||||
func (q *Deque[T]) Remove(at int) T {
|
||||
if at < 0 || at >= q.Len() {
|
||||
panic("deque: Remove() called with index out of range")
|
||||
}
|
||||
|
||||
rm := (q.head + at) & (len(q.buf) - 1)
|
||||
if at*2 < q.count {
|
||||
for i := 0; i < at; i++ {
|
||||
prev := q.prev(rm)
|
||||
q.buf[prev], q.buf[rm] = q.buf[rm], q.buf[prev]
|
||||
rm = prev
|
||||
}
|
||||
return q.PopFront()
|
||||
}
|
||||
swaps := q.count - at - 1
|
||||
for i := 0; i < swaps; i++ {
|
||||
next := q.next(rm)
|
||||
q.buf[rm], q.buf[next] = q.buf[next], q.buf[rm]
|
||||
rm = next
|
||||
}
|
||||
return q.PopBack()
|
||||
}
|
||||
|
||||
// SetMinCapacity sets a minimum capacity of 2^minCapacityExp. If the value of
|
||||
// the minimum capacity is less than or equal to the minimum allowed, then
|
||||
// capacity is set to the minimum allowed. This may be called at anytime to set
|
||||
// a new minimum capacity.
|
||||
//
|
||||
// Setting a larger minimum capacity may be used to prevent resizing when the
|
||||
// number of stored items changes frequently across a wide range.
|
||||
func (q *Deque[T]) SetMinCapacity(minCapacityExp uint) {
|
||||
if 1<<minCapacityExp > minCapacity {
|
||||
q.minCap = 1 << minCapacityExp
|
||||
} else {
|
||||
q.minCap = minCapacity
|
||||
}
|
||||
}
|
||||
|
||||
// prev returns the previous buffer position wrapping around buffer.
|
||||
func (q *Deque[T]) prev(i int) int {
|
||||
return (i - 1) & (len(q.buf) - 1) // bitwise modulus
|
||||
}
|
||||
|
||||
// next returns the next buffer position wrapping around buffer.
|
||||
func (q *Deque[T]) next(i int) int {
|
||||
return (i + 1) & (len(q.buf) - 1) // bitwise modulus
|
||||
}
|
||||
|
||||
// growIfFull resizes up if the buffer is full.
|
||||
func (q *Deque[T]) growIfFull() {
|
||||
if q.count != len(q.buf) {
|
||||
return
|
||||
}
|
||||
if len(q.buf) == 0 {
|
||||
if q.minCap == 0 {
|
||||
q.minCap = minCapacity
|
||||
}
|
||||
q.buf = make([]T, q.minCap)
|
||||
return
|
||||
}
|
||||
q.resize()
|
||||
}
|
||||
|
||||
// shrinkIfExcess resize down if the buffer 1/4 full.
|
||||
func (q *Deque[T]) shrinkIfExcess() {
|
||||
if len(q.buf) > q.minCap && (q.count<<2) == len(q.buf) {
|
||||
q.resize()
|
||||
}
|
||||
}
|
||||
|
||||
// resize resizes the deque to fit exactly twice its current contents. This is
|
||||
// used to grow the queue when it is full, and also to shrink it when it is
|
||||
// only a quarter full.
|
||||
func (q *Deque[T]) resize() {
|
||||
newBuf := make([]T, q.count<<1)
|
||||
if q.tail > q.head {
|
||||
copy(newBuf, q.buf[q.head:q.tail])
|
||||
} else {
|
||||
n := copy(newBuf, q.buf[q.head:])
|
||||
copy(newBuf[n:], q.buf[:q.tail])
|
||||
}
|
||||
|
||||
q.head = 0
|
||||
q.tail = q.count
|
||||
q.buf = newBuf
|
||||
}
|
||||
836
util/queue/deque_test.go
Normal file
836
util/queue/deque_test.go
Normal file
@@ -0,0 +1,836 @@
|
||||
package queue
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
"unicode"
|
||||
)
|
||||
|
||||
func TestEmpty(t *testing.T) {
|
||||
q := New[string]()
|
||||
if q.Len() != 0 {
|
||||
t.Error("q.Len() =", q.Len(), "expect 0")
|
||||
}
|
||||
if q.Cap() != 0 {
|
||||
t.Error("expected q.Cap() == 0")
|
||||
}
|
||||
idx := q.Index(func(item string) bool {
|
||||
return true
|
||||
})
|
||||
if idx != -1 {
|
||||
t.Error("should return -1 index for nil deque")
|
||||
}
|
||||
idx = q.RIndex(func(item string) bool {
|
||||
return true
|
||||
})
|
||||
if idx != -1 {
|
||||
t.Error("should return -1 index for nil deque")
|
||||
}
|
||||
}
|
||||
|
||||
func TestNil(t *testing.T) {
|
||||
var q *Deque[int]
|
||||
if q.Len() != 0 {
|
||||
t.Error("expected q.Len() == 0")
|
||||
}
|
||||
if q.Cap() != 0 {
|
||||
t.Error("expected q.Cap() == 0")
|
||||
}
|
||||
q.Rotate(5)
|
||||
idx := q.Index(func(item int) bool {
|
||||
return true
|
||||
})
|
||||
if idx != -1 {
|
||||
t.Error("should return -1 index for nil deque")
|
||||
}
|
||||
idx = q.RIndex(func(item int) bool {
|
||||
return true
|
||||
})
|
||||
if idx != -1 {
|
||||
t.Error("should return -1 index for nil deque")
|
||||
}
|
||||
}
|
||||
|
||||
func TestFrontBack(t *testing.T) {
|
||||
var q Deque[string]
|
||||
q.PushBack("foo")
|
||||
q.PushBack("bar")
|
||||
q.PushBack("baz")
|
||||
if q.Front() != "foo" {
|
||||
t.Error("wrong value at front of queue")
|
||||
}
|
||||
if q.Back() != "baz" {
|
||||
t.Error("wrong value at back of queue")
|
||||
}
|
||||
|
||||
if q.PopFront() != "foo" {
|
||||
t.Error("wrong value removed from front of queue")
|
||||
}
|
||||
if q.Front() != "bar" {
|
||||
t.Error("wrong value remaining at front of queue")
|
||||
}
|
||||
if q.Back() != "baz" {
|
||||
t.Error("wrong value remaining at back of queue")
|
||||
}
|
||||
|
||||
if q.PopBack() != "baz" {
|
||||
t.Error("wrong value removed from back of queue")
|
||||
}
|
||||
if q.Front() != "bar" {
|
||||
t.Error("wrong value remaining at front of queue")
|
||||
}
|
||||
if q.Back() != "bar" {
|
||||
t.Error("wrong value remaining at back of queue")
|
||||
}
|
||||
}
|
||||
|
||||
func TestGrowShrinkBack(t *testing.T) {
|
||||
var q Deque[int]
|
||||
size := minCapacity * 2
|
||||
|
||||
for i := 0; i < size; i++ {
|
||||
if q.Len() != i {
|
||||
t.Error("q.Len() =", q.Len(), "expected", i)
|
||||
}
|
||||
q.PushBack(i)
|
||||
}
|
||||
bufLen := len(q.buf)
|
||||
|
||||
// Remove from back.
|
||||
for i := size; i > 0; i-- {
|
||||
if q.Len() != i {
|
||||
t.Error("q.Len() =", q.Len(), "expected", i)
|
||||
}
|
||||
x := q.PopBack()
|
||||
if x != i-1 {
|
||||
t.Error("q.PopBack() =", x, "expected", i-1)
|
||||
}
|
||||
}
|
||||
if q.Len() != 0 {
|
||||
t.Error("q.Len() =", q.Len(), "expected 0")
|
||||
}
|
||||
if len(q.buf) == bufLen {
|
||||
t.Error("queue buffer did not shrink")
|
||||
}
|
||||
}
|
||||
|
||||
func TestGrowShrinkFront(t *testing.T) {
|
||||
var q Deque[int]
|
||||
size := minCapacity * 2
|
||||
|
||||
for i := 0; i < size; i++ {
|
||||
if q.Len() != i {
|
||||
t.Error("q.Len() =", q.Len(), "expected", i)
|
||||
}
|
||||
q.PushBack(i)
|
||||
}
|
||||
bufLen := len(q.buf)
|
||||
|
||||
// Remove from Front
|
||||
for i := 0; i < size; i++ {
|
||||
if q.Len() != size-i {
|
||||
t.Error("q.Len() =", q.Len(), "expected", minCapacity*2-i)
|
||||
}
|
||||
x := q.PopFront()
|
||||
if x != i {
|
||||
t.Error("q.PopBack() =", x, "expected", i)
|
||||
}
|
||||
}
|
||||
if q.Len() != 0 {
|
||||
t.Error("q.Len() =", q.Len(), "expected 0")
|
||||
}
|
||||
if len(q.buf) == bufLen {
|
||||
t.Error("queue buffer did not shrink")
|
||||
}
|
||||
}
|
||||
|
||||
func TestSimple(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
for i := 0; i < minCapacity; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
if q.Front() != 0 {
|
||||
t.Fatalf("expected 0 at front, got %d", q.Front())
|
||||
}
|
||||
if q.Back() != minCapacity-1 {
|
||||
t.Fatalf("expected %d at back, got %d", minCapacity-1, q.Back())
|
||||
}
|
||||
|
||||
for i := 0; i < minCapacity; i++ {
|
||||
if q.Front() != i {
|
||||
t.Error("peek", i, "had value", q.Front())
|
||||
}
|
||||
x := q.PopFront()
|
||||
if x != i {
|
||||
t.Error("remove", i, "had value", x)
|
||||
}
|
||||
}
|
||||
|
||||
q.Clear()
|
||||
for i := 0; i < minCapacity; i++ {
|
||||
q.PushFront(i)
|
||||
}
|
||||
for i := minCapacity - 1; i >= 0; i-- {
|
||||
x := q.PopFront()
|
||||
if x != i {
|
||||
t.Error("remove", i, "had value", x)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestBufferWrap(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
for i := 0; i < minCapacity; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
|
||||
for i := 0; i < 3; i++ {
|
||||
q.PopFront()
|
||||
q.PushBack(minCapacity + i)
|
||||
}
|
||||
|
||||
for i := 0; i < minCapacity; i++ {
|
||||
if q.Front() != i+3 {
|
||||
t.Error("peek", i, "had value", q.Front())
|
||||
}
|
||||
q.PopFront()
|
||||
}
|
||||
}
|
||||
|
||||
func TestBufferWrapReverse(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
for i := 0; i < minCapacity; i++ {
|
||||
q.PushFront(i)
|
||||
}
|
||||
for i := 0; i < 3; i++ {
|
||||
q.PopBack()
|
||||
q.PushFront(minCapacity + i)
|
||||
}
|
||||
|
||||
for i := 0; i < minCapacity; i++ {
|
||||
if q.Back() != i+3 {
|
||||
t.Error("peek", i, "had value", q.Front())
|
||||
}
|
||||
q.PopBack()
|
||||
}
|
||||
}
|
||||
|
||||
func TestLen(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
if q.Len() != 0 {
|
||||
t.Error("empty queue length not 0")
|
||||
}
|
||||
|
||||
for i := 0; i < 1000; i++ {
|
||||
q.PushBack(i)
|
||||
if q.Len() != i+1 {
|
||||
t.Error("adding: queue with", i, "elements has length", q.Len())
|
||||
}
|
||||
}
|
||||
for i := 0; i < 1000; i++ {
|
||||
q.PopFront()
|
||||
if q.Len() != 1000-i-1 {
|
||||
t.Error("removing: queue with", 1000-i-i, "elements has length", q.Len())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestBack(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
for i := 0; i < minCapacity+5; i++ {
|
||||
q.PushBack(i)
|
||||
if q.Back() != i {
|
||||
t.Errorf("Back returned wrong value")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestNew(t *testing.T) {
|
||||
minCap := 64
|
||||
q := New[string](0, minCap)
|
||||
if q.Cap() != 0 {
|
||||
t.Fatal("should not have allowcated mem yet")
|
||||
}
|
||||
q.PushBack("foo")
|
||||
q.PopFront()
|
||||
if q.Len() != 0 {
|
||||
t.Fatal("Len() should return 0")
|
||||
}
|
||||
if q.Cap() != minCap {
|
||||
t.Fatalf("worng capactiy expected %d, got %d", minCap, q.Cap())
|
||||
}
|
||||
|
||||
curCap := 128
|
||||
q = New[string](curCap, minCap)
|
||||
if q.Cap() != curCap {
|
||||
t.Fatalf("Cap() should return %d, got %d", curCap, q.Cap())
|
||||
}
|
||||
if q.Len() != 0 {
|
||||
t.Fatalf("Len() should return 0")
|
||||
}
|
||||
q.PushBack("foo")
|
||||
if q.Cap() != curCap {
|
||||
t.Fatalf("Cap() should return %d, got %d", curCap, q.Cap())
|
||||
}
|
||||
}
|
||||
|
||||
func checkRotate(t *testing.T, size int) {
|
||||
var q Deque[int]
|
||||
for i := 0; i < size; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
|
||||
for i := 0; i < q.Len(); i++ {
|
||||
x := i
|
||||
for n := 0; n < q.Len(); n++ {
|
||||
if q.At(n) != x {
|
||||
t.Fatalf("a[%d] != %d after rotate and copy", n, x)
|
||||
}
|
||||
x++
|
||||
if x == q.Len() {
|
||||
x = 0
|
||||
}
|
||||
}
|
||||
q.Rotate(1)
|
||||
if q.Back() != i {
|
||||
t.Fatal("wrong value during rotation")
|
||||
}
|
||||
}
|
||||
for i := q.Len() - 1; i >= 0; i-- {
|
||||
q.Rotate(-1)
|
||||
if q.Front() != i {
|
||||
t.Fatal("wrong value during reverse rotation")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestRotate(t *testing.T) {
|
||||
checkRotate(t, 10)
|
||||
checkRotate(t, minCapacity)
|
||||
checkRotate(t, minCapacity+minCapacity/2)
|
||||
|
||||
var q Deque[int]
|
||||
for i := 0; i < 10; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
q.Rotate(11)
|
||||
if q.Front() != 1 {
|
||||
t.Error("rotating 11 places should have been same as one")
|
||||
}
|
||||
q.Rotate(-21)
|
||||
if q.Front() != 0 {
|
||||
t.Error("rotating -21 places should have been same as one -1")
|
||||
}
|
||||
q.Rotate(q.Len())
|
||||
if q.Front() != 0 {
|
||||
t.Error("should not have rotated")
|
||||
}
|
||||
q.Clear()
|
||||
q.PushBack(0)
|
||||
q.Rotate(13)
|
||||
if q.Front() != 0 {
|
||||
t.Error("should not have rotated")
|
||||
}
|
||||
}
|
||||
|
||||
func TestAt(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
for i := 0; i < 1000; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
|
||||
// Front to back.
|
||||
for j := 0; j < q.Len(); j++ {
|
||||
if q.At(j) != j {
|
||||
t.Errorf("index %d doesn't contain %d", j, j)
|
||||
}
|
||||
}
|
||||
|
||||
// Back to front
|
||||
for j := 1; j <= q.Len(); j++ {
|
||||
if q.At(q.Len()-j) != q.Len()-j {
|
||||
t.Errorf("index %d doesn't contain %d", q.Len()-j, q.Len()-j)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSet(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
for i := 0; i < 1000; i++ {
|
||||
q.PushBack(i)
|
||||
q.Set(i, i+50)
|
||||
}
|
||||
|
||||
// Front to back.
|
||||
for j := 0; j < q.Len(); j++ {
|
||||
if q.At(j) != j+50 {
|
||||
t.Errorf("index %d doesn't contain %d", j, j+50)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestClear(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
for i := 0; i < 100; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
if q.Len() != 100 {
|
||||
t.Error("push: queue with 100 elements has length", q.Len())
|
||||
}
|
||||
cap := len(q.buf)
|
||||
q.Clear()
|
||||
if q.Len() != 0 {
|
||||
t.Error("empty queue length not 0 after clear")
|
||||
}
|
||||
if len(q.buf) != cap {
|
||||
t.Error("queue capacity changed after clear")
|
||||
}
|
||||
|
||||
// Check that there are no remaining references after Clear()
|
||||
for i := 0; i < len(q.buf); i++ {
|
||||
if q.buf[i] != 0 {
|
||||
t.Error("queue has non-nil deleted elements after Clear()")
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestIndex(t *testing.T) {
|
||||
var q Deque[rune]
|
||||
for _, x := range "Hello, 世界" {
|
||||
q.PushBack(x)
|
||||
}
|
||||
idx := q.Index(func(item rune) bool {
|
||||
c := item
|
||||
return unicode.Is(unicode.Han, c)
|
||||
})
|
||||
if idx != 7 {
|
||||
t.Fatal("Expected index 7, got", idx)
|
||||
}
|
||||
idx = q.Index(func(item rune) bool {
|
||||
c := item
|
||||
return c == 'H'
|
||||
})
|
||||
if idx != 0 {
|
||||
t.Fatal("Expected index 0, got", idx)
|
||||
}
|
||||
idx = q.Index(func(item rune) bool {
|
||||
return false
|
||||
})
|
||||
if idx != -1 {
|
||||
t.Fatal("Expected index -1, got", idx)
|
||||
}
|
||||
}
|
||||
|
||||
func TestRIndex(t *testing.T) {
|
||||
var q Deque[rune]
|
||||
for _, x := range "Hello, 世界" {
|
||||
q.PushBack(x)
|
||||
}
|
||||
idx := q.RIndex(func(item rune) bool {
|
||||
c := item
|
||||
return unicode.Is(unicode.Han, c)
|
||||
})
|
||||
if idx != 8 {
|
||||
t.Fatal("Expected index 8, got", idx)
|
||||
}
|
||||
idx = q.RIndex(func(item rune) bool {
|
||||
c := item
|
||||
return c == 'H'
|
||||
})
|
||||
if idx != 0 {
|
||||
t.Fatal("Expected index 0, got", idx)
|
||||
}
|
||||
idx = q.RIndex(func(item rune) bool {
|
||||
return false
|
||||
})
|
||||
if idx != -1 {
|
||||
t.Fatal("Expected index -1, got", idx)
|
||||
}
|
||||
}
|
||||
|
||||
func TestInsert(t *testing.T) {
|
||||
q := new(Deque[rune])
|
||||
for _, x := range "ABCDEFG" {
|
||||
q.PushBack(x)
|
||||
}
|
||||
q.Insert(4, 'x') // ABCDxEFG
|
||||
if q.At(4) != 'x' {
|
||||
t.Error("expected x at position 4, got", q.At(4))
|
||||
}
|
||||
|
||||
q.Insert(2, 'y') // AByCDxEFG
|
||||
if q.At(2) != 'y' {
|
||||
t.Error("expected y at position 2")
|
||||
}
|
||||
if q.At(5) != 'x' {
|
||||
t.Error("expected x at position 5")
|
||||
}
|
||||
|
||||
q.Insert(0, 'b') // bAByCDxEFG
|
||||
if q.Front() != 'b' {
|
||||
t.Error("expected b inserted at front, got", q.Front())
|
||||
}
|
||||
|
||||
q.Insert(q.Len(), 'e') // bAByCDxEFGe
|
||||
|
||||
for i, x := range "bAByCDxEFGe" {
|
||||
if q.PopFront() != x {
|
||||
t.Error("expected", x, "at position", i)
|
||||
}
|
||||
}
|
||||
|
||||
qs := New[string](16)
|
||||
|
||||
for i := 0; i < qs.Cap(); i++ {
|
||||
qs.PushBack(fmt.Sprint(i))
|
||||
}
|
||||
// deque: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
||||
// buffer: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
|
||||
for i := 0; i < qs.Cap()/2; i++ {
|
||||
qs.PopFront()
|
||||
}
|
||||
// deque: 8 9 10 11 12 13 14 15
|
||||
// buffer: [_,_,_,_,_,_,_,_,8,9,10,11,12,13,14,15]
|
||||
for i := 0; i < qs.Cap()/4; i++ {
|
||||
qs.PushBack(fmt.Sprint(qs.Cap() + i))
|
||||
}
|
||||
// deque: 8 9 10 11 12 13 14 15 16 17 18 19
|
||||
// buffer: [16,17,18,19,_,_,_,_,8,9,10,11,12,13,14,15]
|
||||
|
||||
at := qs.Len() - 2
|
||||
qs.Insert(at, "x")
|
||||
// deque: 8 9 10 11 12 13 14 15 16 17 x 18 19
|
||||
// buffer: [16,17,x,18,19,_,_,_,8,9,10,11,12,13,14,15]
|
||||
if qs.At(at) != "x" {
|
||||
t.Error("expected x at position", at)
|
||||
}
|
||||
if qs.At(at) != "x" {
|
||||
t.Error("expected x at position", at)
|
||||
}
|
||||
|
||||
qs.Insert(2, "y")
|
||||
// deque: 8 9 y 10 11 12 13 14 15 16 17 x 18 19
|
||||
// buffer: [16,17,x,18,19,_,_,8,9,y,10,11,12,13,14,15]
|
||||
if qs.At(2) != "y" {
|
||||
t.Error("expected y at position 2")
|
||||
}
|
||||
if qs.At(at+1) != "x" {
|
||||
t.Error("expected x at position 5")
|
||||
}
|
||||
|
||||
qs.Insert(0, "b")
|
||||
// deque: b 8 9 y 10 11 12 13 14 15 16 17 x 18 19
|
||||
// buffer: [16,17,x,18,19,_,b,8,9,y,10,11,12,13,14,15]
|
||||
if qs.Front() != "b" {
|
||||
t.Error("expected b inserted at front, got", qs.Front())
|
||||
}
|
||||
|
||||
qs.Insert(qs.Len(), "e")
|
||||
if qs.Cap() != qs.Len() {
|
||||
t.Fatal("Expected full buffer")
|
||||
}
|
||||
// deque: b 8 9 y 10 11 12 13 14 15 16 17 x 18 19 e
|
||||
// buffer: [16,17,x,18,19,e,b,8,9,y,10,11,12,13,14,15]
|
||||
for i, x := range []string{"16", "17", "x", "18", "19", "e", "b", "8", "9", "y", "10", "11", "12", "13", "14", "15"} {
|
||||
if qs.buf[i] != x {
|
||||
t.Error("expected", x, "at buffer position", i)
|
||||
}
|
||||
}
|
||||
for i, x := range []string{"b", "8", "9", "y", "10", "11", "12", "13", "14", "15", "16", "17", "x", "18", "19", "e"} {
|
||||
if qs.Front() != x {
|
||||
t.Error("expected", x, "at position", i, "got", qs.Front())
|
||||
}
|
||||
qs.PopFront()
|
||||
}
|
||||
}
|
||||
|
||||
func TestRemove(t *testing.T) {
|
||||
q := new(Deque[rune])
|
||||
for _, x := range "ABCDEFG" {
|
||||
q.PushBack(x)
|
||||
}
|
||||
|
||||
if q.Remove(4) != 'E' { // ABCDFG
|
||||
t.Error("expected E from position 4")
|
||||
}
|
||||
|
||||
if q.Remove(2) != 'C' { // ABDFG
|
||||
t.Error("expected C at position 2")
|
||||
}
|
||||
if q.Back() != 'G' {
|
||||
t.Error("expected G at back")
|
||||
}
|
||||
|
||||
if q.Remove(0) != 'A' { // BDFG
|
||||
t.Error("expected to remove A from front")
|
||||
}
|
||||
if q.Front() != 'B' {
|
||||
t.Error("expected G at back")
|
||||
}
|
||||
|
||||
if q.Remove(q.Len()-1) != 'G' { // BDF
|
||||
t.Error("expected to remove G from back")
|
||||
}
|
||||
if q.Back() != 'F' {
|
||||
t.Error("expected F at back")
|
||||
}
|
||||
|
||||
if q.Len() != 3 {
|
||||
t.Error("wrong length")
|
||||
}
|
||||
}
|
||||
|
||||
func TestFrontBackOutOfRangePanics(t *testing.T) {
|
||||
const msg = "should panic when peeking empty queue"
|
||||
var q Deque[int]
|
||||
assertPanics(t, msg, func() {
|
||||
q.Front()
|
||||
})
|
||||
assertPanics(t, msg, func() {
|
||||
q.Back()
|
||||
})
|
||||
|
||||
q.PushBack(1)
|
||||
q.PopFront()
|
||||
|
||||
assertPanics(t, msg, func() {
|
||||
q.Front()
|
||||
})
|
||||
assertPanics(t, msg, func() {
|
||||
q.Back()
|
||||
})
|
||||
}
|
||||
|
||||
func TestPopFrontOutOfRangePanics(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
assertPanics(t, "should panic when removing empty queue", func() {
|
||||
q.PopFront()
|
||||
})
|
||||
|
||||
q.PushBack(1)
|
||||
q.PopFront()
|
||||
|
||||
assertPanics(t, "should panic when removing emptied queue", func() {
|
||||
q.PopFront()
|
||||
})
|
||||
}
|
||||
|
||||
func TestPopBackOutOfRangePanics(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
assertPanics(t, "should panic when removing empty queue", func() {
|
||||
q.PopBack()
|
||||
})
|
||||
|
||||
q.PushBack(1)
|
||||
q.PopBack()
|
||||
|
||||
assertPanics(t, "should panic when removing emptied queue", func() {
|
||||
q.PopBack()
|
||||
})
|
||||
}
|
||||
|
||||
func TestAtOutOfRangePanics(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
q.PushBack(1)
|
||||
q.PushBack(2)
|
||||
q.PushBack(3)
|
||||
|
||||
assertPanics(t, "should panic when negative index", func() {
|
||||
q.At(-4)
|
||||
})
|
||||
|
||||
assertPanics(t, "should panic when index greater than length", func() {
|
||||
q.At(4)
|
||||
})
|
||||
}
|
||||
|
||||
func TestSetOutOfRangePanics(t *testing.T) {
|
||||
var q Deque[int]
|
||||
|
||||
q.PushBack(1)
|
||||
q.PushBack(2)
|
||||
q.PushBack(3)
|
||||
|
||||
assertPanics(t, "should panic when negative index", func() {
|
||||
q.Set(-4, 1)
|
||||
})
|
||||
|
||||
assertPanics(t, "should panic when index greater than length", func() {
|
||||
q.Set(4, 1)
|
||||
})
|
||||
}
|
||||
|
||||
func TestInsertOutOfRangePanics(t *testing.T) {
|
||||
q := new(Deque[string])
|
||||
|
||||
assertPanics(t, "should panic when inserting out of range", func() {
|
||||
q.Insert(1, "X")
|
||||
})
|
||||
|
||||
q.PushBack("A")
|
||||
|
||||
assertPanics(t, "should panic when inserting at negative index", func() {
|
||||
q.Insert(-1, "Y")
|
||||
})
|
||||
|
||||
assertPanics(t, "should panic when inserting out of range", func() {
|
||||
q.Insert(2, "B")
|
||||
})
|
||||
}
|
||||
|
||||
func TestRemoveOutOfRangePanics(t *testing.T) {
|
||||
q := new(Deque[string])
|
||||
|
||||
assertPanics(t, "should panic when removing from empty queue", func() {
|
||||
q.Remove(0)
|
||||
})
|
||||
|
||||
q.PushBack("A")
|
||||
|
||||
assertPanics(t, "should panic when removing at negative index", func() {
|
||||
q.Remove(-1)
|
||||
})
|
||||
|
||||
assertPanics(t, "should panic when removing out of range", func() {
|
||||
q.Remove(1)
|
||||
})
|
||||
}
|
||||
|
||||
func TestSetMinCapacity(t *testing.T) {
|
||||
var q Deque[string]
|
||||
exp := uint(8)
|
||||
q.SetMinCapacity(exp)
|
||||
q.PushBack("A")
|
||||
if q.minCap != 1<<exp {
|
||||
t.Fatal("wrong minimum capacity")
|
||||
}
|
||||
if len(q.buf) != 1<<exp {
|
||||
t.Fatal("wrong buffer size")
|
||||
}
|
||||
q.PopBack()
|
||||
if q.minCap != 1<<exp {
|
||||
t.Fatal("wrong minimum capacity")
|
||||
}
|
||||
if len(q.buf) != 1<<exp {
|
||||
t.Fatal("wrong buffer size")
|
||||
}
|
||||
q.SetMinCapacity(0)
|
||||
if q.minCap != minCapacity {
|
||||
t.Fatal("wrong minimum capacity")
|
||||
}
|
||||
}
|
||||
|
||||
func assertPanics(t *testing.T, name string, f func()) {
|
||||
defer func() {
|
||||
if r := recover(); r == nil {
|
||||
t.Errorf("%s: didn't panic as expected", name)
|
||||
}
|
||||
}()
|
||||
|
||||
f()
|
||||
}
|
||||
|
||||
func BenchmarkPushFront(b *testing.B) {
|
||||
var q Deque[int]
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PushFront(i)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPushBack(b *testing.B) {
|
||||
var q Deque[int]
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSerial(b *testing.B) {
|
||||
var q Deque[int]
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PopFront()
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSerialReverse(b *testing.B) {
|
||||
var q Deque[int]
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PushFront(i)
|
||||
}
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PopBack()
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkRotate(b *testing.B) {
|
||||
q := new(Deque[int])
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
b.ResetTimer()
|
||||
// N complete rotations on length N - 1.
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.Rotate(b.N - 1)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkInsert(b *testing.B) {
|
||||
q := new(Deque[int])
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.Insert(q.Len()/2, -i)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkRemove(b *testing.B) {
|
||||
q := new(Deque[int])
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.PushBack(i)
|
||||
}
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.Remove(q.Len() / 2)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkYoyo(b *testing.B) {
|
||||
var q Deque[int]
|
||||
for i := 0; i < b.N; i++ {
|
||||
for j := 0; j < 65536; j++ {
|
||||
q.PushBack(j)
|
||||
}
|
||||
for j := 0; j < 65536; j++ {
|
||||
q.PopFront()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkYoyoFixed(b *testing.B) {
|
||||
var q Deque[int]
|
||||
q.SetMinCapacity(16)
|
||||
for i := 0; i < b.N; i++ {
|
||||
for j := 0; j < 65536; j++ {
|
||||
q.PushBack(j)
|
||||
}
|
||||
for j := 0; j < 65536; j++ {
|
||||
q.PopFront()
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -69,6 +69,13 @@ func (pq *PriorityQueue) Pop() *Item {
|
||||
return heap.Pop(&pq.priorityQueueSlice).(*Item)
|
||||
}
|
||||
|
||||
func (pq *PriorityQueue) GetHighest() *Item{
|
||||
if len(pq.priorityQueueSlice)>0 {
|
||||
return pq.priorityQueueSlice[0]
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
func (pq *PriorityQueue) Len() int {
|
||||
return len(pq.priorityQueueSlice)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user