mirror of
https://github.com/HiMeditator/auto-caption.git
synced 2026-02-04 04:14:42 +08:00
65 lines
2.1 KiB
Python
65 lines
2.1 KiB
Python
import resampy
|
|
import numpy as np
|
|
import numpy.core.multiarray # do not remove
|
|
|
|
def merge_chunk_channels(chunk: bytes, channels: int) -> bytes:
|
|
"""
|
|
将当前多通道音频数据块转换为单通道音频数据块
|
|
|
|
Args:
|
|
chunk: 多通道音频数据块
|
|
channels: 通道数
|
|
|
|
Returns:
|
|
单通道音频数据块
|
|
"""
|
|
if channels == 1: return chunk
|
|
# (length * channels,)
|
|
chunk_np = np.frombuffer(chunk, dtype=np.int16)
|
|
# (length, channels)
|
|
chunk_np = chunk_np.reshape(-1, channels)
|
|
# (length,)
|
|
chunk_mono_f = np.mean(chunk_np.astype(np.float32), axis=1)
|
|
chunk_mono = np.round(chunk_mono_f).astype(np.int16)
|
|
return chunk_mono.tobytes()
|
|
|
|
|
|
def resample_chunk_mono(chunk: bytes, channels: int, orig_sr: int, target_sr: int) -> bytes:
|
|
"""
|
|
将当前多通道音频数据块转换成单通道音频数据块,并进行重采样
|
|
|
|
Args:
|
|
chunk: 多通道音频数据块
|
|
channels: 通道数
|
|
orig_sr: 原始采样率
|
|
target_sr: 目标采样率
|
|
|
|
Return:
|
|
单通道音频数据块
|
|
"""
|
|
if channels == 1:
|
|
chunk_mono = np.frombuffer(chunk, dtype=np.int16)
|
|
chunk_mono = chunk_mono.astype(np.float32)
|
|
else:
|
|
# (length * channels,)
|
|
chunk_np = np.frombuffer(chunk, dtype=np.int16)
|
|
# (length, channels)
|
|
chunk_np = chunk_np.reshape(-1, channels)
|
|
# (length,)
|
|
chunk_mono = np.mean(chunk_np.astype(np.float32), axis=1)
|
|
|
|
if orig_sr == target_sr:
|
|
return chunk_mono.astype(np.int16).tobytes()
|
|
|
|
chunk_mono_r = resampy.resample(chunk_mono, orig_sr, target_sr)
|
|
chunk_mono_r = np.round(chunk_mono_r).astype(np.int16)
|
|
real_len = round(chunk_mono.shape[0] * target_sr / orig_sr)
|
|
if(chunk_mono_r.shape[0] != real_len):
|
|
print(chunk_mono_r.shape[0], real_len)
|
|
if(chunk_mono_r.shape[0] > real_len):
|
|
chunk_mono_r = chunk_mono_r[:real_len]
|
|
else:
|
|
while chunk_mono_r.shape[0] < real_len:
|
|
chunk_mono_r = np.append(chunk_mono_r, chunk_mono_r[-1])
|
|
return chunk_mono_r.tobytes()
|