Files
auto-caption/engine/audio2text/glm.py
nocmt 0825e48902 feat(engine): 添加GLM-ASR语音识别引擎支持
- 新增GLM-ASR云端语音识别引擎实现
- 扩展配置界面添加GLM相关参数设置
- Ollama支持自定义域名和Apikey以支持云端和其他LLM
- 修改音频处理逻辑以支持新引擎
- 更新依赖项和构建配置
- 修复Ollama翻译功能相关问题
2026-01-10 16:02:24 +08:00

164 lines
5.5 KiB
Python

import threading
import io
import wave
import struct
import math
import audioop
import requests
from datetime import datetime
from utils import shared_data
from utils import stdout_cmd, stdout_obj, google_translate, ollama_translate
class GlmRecognizer:
"""
使用 GLM-ASR 引擎处理音频数据,并在标准输出中输出 Auto Caption 软件可读取的 JSON 字符串数据
初始化参数:
url: GLM-ASR API URL
model: GLM-ASR 模型名称
api_key: GLM-ASR API Key
source: 源语言
target: 目标语言
trans_model: 翻译模型名称
ollama_name: Ollama 模型名称
"""
def __init__(self, url: str, model: str, api_key: str, source: str, target: str | None, trans_model: str, ollama_name: str, ollama_url: str = '', ollama_api_key: str = ''):
self.url = url
self.model = model
self.api_key = api_key
self.source = source
self.target = target
if trans_model == 'google':
self.trans_func = google_translate
else:
self.trans_func = ollama_translate
self.ollama_name = ollama_name
self.ollama_url = ollama_url
self.ollama_api_key = ollama_api_key
self.audio_buffer = []
self.is_speech = False
self.silence_frames = 0
self.speech_start_time = None
self.time_str = ''
self.cur_id = 0
# VAD settings (假设 16k 16bit, chunk size 1024 or similar)
# 16bit = 2 bytes per sample.
# RMS threshold needs tuning. 500 is a conservative guess for silence.
self.threshold = 500
self.silence_limit = 15 # frames (approx 0.5-1s depending on chunk size)
self.min_speech_frames = 10 # frames
def start(self):
"""启动 GLM 引擎"""
stdout_cmd('info', 'GLM-ASR recognizer started.')
def stop(self):
"""停止 GLM 引擎"""
stdout_cmd('info', 'GLM-ASR recognizer stopped.')
def process_audio(self, chunk):
# chunk is bytes (int16)
rms = audioop.rms(chunk, 2)
if rms > self.threshold:
if not self.is_speech:
self.is_speech = True
self.time_str = datetime.now().strftime('%H:%M:%S.%f')[:-3]
self.audio_buffer = []
self.audio_buffer.append(chunk)
self.silence_frames = 0
else:
if self.is_speech:
self.audio_buffer.append(chunk)
self.silence_frames += 1
if self.silence_frames > self.silence_limit:
# Speech ended
if len(self.audio_buffer) > self.min_speech_frames:
self.recognize(self.audio_buffer, self.time_str)
self.is_speech = False
self.audio_buffer = []
self.silence_frames = 0
def recognize(self, audio_frames, time_s):
audio_bytes = b''.join(audio_frames)
wav_io = io.BytesIO()
with wave.open(wav_io, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(16000)
wav_file.writeframes(audio_bytes)
wav_io.seek(0)
threading.Thread(
target=self._do_request,
args=(wav_io.read(), time_s, self.cur_id)
).start()
self.cur_id += 1
def _do_request(self, audio_content, time_s, index):
try:
files = {
'file': ('audio.wav', audio_content, 'audio/wav')
}
data = {
'model': self.model,
'stream': 'false'
}
headers = {
'Authorization': f'Bearer {self.api_key}'
}
response = requests.post(self.url, headers=headers, data=data, files=files, timeout=15)
if response.status_code == 200:
res_json = response.json()
text = res_json.get('text', '')
if text:
self.output_caption(text, time_s, index)
else:
try:
err_msg = response.json()
stdout_cmd('error', f"GLM API Error: {err_msg}")
except:
stdout_cmd('error', f"GLM API Error: {response.text}")
except Exception as e:
stdout_cmd('error', f"GLM Request Failed: {str(e)}")
def output_caption(self, text, time_s, index):
caption = {
'command': 'caption',
'index': index,
'time_s': time_s,
'time_t': datetime.now().strftime('%H:%M:%S.%f')[:-3],
'text': text,
'translation': ''
}
if self.target:
if self.trans_func == ollama_translate:
th = threading.Thread(
target=self.trans_func,
args=(self.ollama_name, self.target, caption['text'], time_s, self.ollama_url, self.ollama_api_key),
daemon=True
)
else:
th = threading.Thread(
target=self.trans_func,
args=(self.ollama_name, self.target, caption['text'], time_s),
daemon=True
)
th.start()
stdout_obj(caption)
def translate(self):
global shared_data
while shared_data.status == 'running':
chunk = shared_data.chunk_queue.get()
self.process_audio(chunk)