mirror of
https://github.com/HiMeditator/auto-caption.git
synced 2026-02-04 03:46:11 +08:00
- 新增GLM-ASR云端语音识别引擎实现 - 扩展配置界面添加GLM相关参数设置 - Ollama支持自定义域名和Apikey以支持云端和其他LLM - 修改音频处理逻辑以支持新引擎 - 更新依赖项和构建配置 - 修复Ollama翻译功能相关问题
179 lines
7.1 KiB
Python
179 lines
7.1 KiB
Python
"""
|
|
Shepra-ONNX SenseVoice Model
|
|
|
|
This code file references the following:
|
|
|
|
https://github.com/k2-fsa/sherpa-onnx/blob/master/python-api-examples/simulate-streaming-sense-voice-microphone.py
|
|
"""
|
|
|
|
import time
|
|
from datetime import datetime
|
|
import sherpa_onnx
|
|
import threading
|
|
import numpy as np
|
|
|
|
from utils import shared_data
|
|
from utils import stdout_cmd, stdout_obj
|
|
from utils import google_translate, ollama_translate
|
|
|
|
|
|
class SosvRecognizer:
|
|
"""
|
|
使用 Sense Voice 非流式模型处理流式音频数据,并在标准输出中输出 Auto Caption 软件可读取的 JSON 字符串数据
|
|
|
|
初始化参数:
|
|
model_path: Shepra ONNX Sense Voice 识别模型路径
|
|
vad_model: Silero VAD 模型路径
|
|
source: 识别源语言(auto, zh, en, ja, ko, yue)
|
|
target: 翻译目标语言
|
|
trans_model: 翻译模型名称
|
|
ollama_name: Ollama 模型名称
|
|
"""
|
|
def __init__(self, model_path: str, source: str, target: str | None, trans_model: str, ollama_name: str, ollama_url: str = '', ollama_api_key: str = ''):
|
|
if model_path.startswith('"'):
|
|
model_path = model_path[1:]
|
|
if model_path.endswith('"'):
|
|
model_path = model_path[:-1]
|
|
self.model_path = model_path
|
|
self.ext = ""
|
|
if self.model_path[-4:] == "int8":
|
|
self.ext = ".int8"
|
|
self.source = source
|
|
self.target = target
|
|
if trans_model == 'google':
|
|
self.trans_func = google_translate
|
|
else:
|
|
self.trans_func = ollama_translate
|
|
self.ollama_name = ollama_name
|
|
self.ollama_url = ollama_url
|
|
self.ollama_api_key = ollama_api_key
|
|
self.time_str = ''
|
|
self.cur_id = 0
|
|
self.prev_content = ''
|
|
|
|
def start(self):
|
|
"""启动 Sense Voice 模型"""
|
|
self.recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
|
|
model=f"{self.model_path}/sensevoice/model{self.ext}.onnx",
|
|
tokens=f"{self.model_path}/sensevoice/tokens.txt",
|
|
language=self.source,
|
|
num_threads = 2,
|
|
)
|
|
|
|
vad_config = sherpa_onnx.VadModelConfig()
|
|
vad_config.silero_vad.model = f"{self.model_path}/silero_vad.onnx"
|
|
vad_config.silero_vad.threshold = 0.5
|
|
vad_config.silero_vad.min_silence_duration = 0.1
|
|
vad_config.silero_vad.min_speech_duration = 0.25
|
|
vad_config.silero_vad.max_speech_duration = 5
|
|
vad_config.sample_rate = 16000
|
|
self.window_size = vad_config.silero_vad.window_size
|
|
self.vad = sherpa_onnx.VoiceActivityDetector(vad_config, buffer_size_in_seconds=100)
|
|
|
|
if self.source == 'en':
|
|
model_config = sherpa_onnx.OnlinePunctuationModelConfig(
|
|
cnn_bilstm=f"{self.model_path}/punct-en/model{self.ext}.onnx",
|
|
bpe_vocab=f"{self.model_path}/punct-en/bpe.vocab"
|
|
)
|
|
punct_config = sherpa_onnx.OnlinePunctuationConfig(
|
|
model_config=model_config,
|
|
)
|
|
self.punct = sherpa_onnx.OnlinePunctuation(punct_config)
|
|
else:
|
|
punct_config = sherpa_onnx.OfflinePunctuationConfig(
|
|
model=sherpa_onnx.OfflinePunctuationModelConfig(
|
|
ct_transformer=f"{self.model_path}/punct/model{self.ext}.onnx"
|
|
),
|
|
)
|
|
self.punct = sherpa_onnx.OfflinePunctuation(punct_config)
|
|
|
|
self.buffer = []
|
|
self.offset = 0
|
|
self.started = False
|
|
self.started_time = .0
|
|
self.time_str = datetime.now().strftime('%H:%M:%S.%f')[:-3]
|
|
stdout_cmd('info', 'Shepra ONNX Sense Voice recognizer started.')
|
|
|
|
def send_audio_frame(self, data: bytes):
|
|
"""
|
|
发送音频帧给 SOSV 引擎,引擎将自动识别并将识别结果输出到标准输出中
|
|
|
|
Args:
|
|
data: 音频帧数据,采样率必须为 16000Hz
|
|
"""
|
|
caption = {}
|
|
caption['command'] = 'caption'
|
|
caption['translation'] = ''
|
|
|
|
data_np = np.frombuffer(data, dtype=np.int16).astype(np.float32)
|
|
self.buffer = np.concatenate([self.buffer, data_np])
|
|
while self.offset + self.window_size < len(self.buffer):
|
|
self.vad.accept_waveform(self.buffer[self.offset: self.offset + self.window_size])
|
|
if not self.started and self.vad.is_speech_detected():
|
|
self.started = True
|
|
self.started_time = time.time()
|
|
self.offset += self.window_size
|
|
|
|
if not self.started:
|
|
if len(self.buffer) > 10 * self.window_size:
|
|
self.offset -= len(self.buffer) - 10 * self.window_size
|
|
self.buffer = self.buffer[-10 * self.window_size:]
|
|
|
|
if self.started and time.time() - self.started_time > 0.2:
|
|
stream = self.recognizer.create_stream()
|
|
stream.accept_waveform(16000, self.buffer)
|
|
self.recognizer.decode_stream(stream)
|
|
text = stream.result.text.strip()
|
|
if text and self.prev_content != text:
|
|
caption['index'] = self.cur_id
|
|
caption['text'] = text
|
|
caption['time_s'] = self.time_str
|
|
caption['time_t'] = datetime.now().strftime('%H:%M:%S.%f')[:-3]
|
|
self.prev_content = text
|
|
stdout_obj(caption)
|
|
self.started_time = time.time()
|
|
|
|
while not self.vad.empty():
|
|
stream = self.recognizer.create_stream()
|
|
stream.accept_waveform(16000, self.vad.front.samples)
|
|
self.vad.pop()
|
|
self.recognizer.decode_stream(stream)
|
|
text = stream.result.text.strip()
|
|
|
|
if self.source == 'en':
|
|
text_with_punct = self.punct.add_punctuation_with_case(text)
|
|
else:
|
|
text_with_punct = self.punct.add_punctuation(text)
|
|
|
|
caption['index'] = self.cur_id
|
|
caption['text'] = text_with_punct
|
|
caption['time_s'] = self.time_str
|
|
caption['time_t'] = datetime.now().strftime('%H:%M:%S.%f')[:-3]
|
|
if text:
|
|
stdout_obj(caption)
|
|
if self.target:
|
|
th = threading.Thread(
|
|
target=self.trans_func,
|
|
args=(self.ollama_name, self.target, caption['text'], self.time_str, self.ollama_url, self.ollama_api_key),
|
|
daemon=True
|
|
)
|
|
th.start()
|
|
self.cur_id += 1
|
|
self.prev_content = ''
|
|
self.time_str = datetime.now().strftime('%H:%M:%S.%f')[:-3]
|
|
self.buffer = []
|
|
self.offset = 0
|
|
self.started = False
|
|
self.started_time = .0
|
|
|
|
def translate(self):
|
|
"""持续读取共享数据中的音频帧,并进行语音识别,将识别结果输出到标准输出中"""
|
|
global shared_data
|
|
while shared_data.status == 'running':
|
|
chunk = shared_data.chunk_queue.get()
|
|
self.send_audio_frame(chunk)
|
|
|
|
def stop(self):
|
|
"""停止 Sense Voice 模型"""
|
|
stdout_cmd('info', 'Shepra ONNX Sense Voice recognizer closed.')
|