refactor(engine): 字幕引擎文件夹重命名,字幕记录添加降序选择

- 字幕记录表格可以按时间降序排列
- 将 caption-engine 重命名为 engine
- 更新了相关文件和文件夹的路径
- 修改了 README 和 TODO 文档中的相关内容
- 更新了 Electron 构建配置
This commit is contained in:
himeditator
2025-07-26 21:29:16 +08:00
parent 697488ce84
commit 8e575a9ba3
32 changed files with 82 additions and 789 deletions

View File

@@ -0,0 +1,2 @@
from dashscope.common.error import InvalidParameter
from .gummy import GummyTranslator

105
engine/audio2text/gummy.py Normal file
View File

@@ -0,0 +1,105 @@
from dashscope.audio.asr import (
TranslationRecognizerCallback,
TranscriptionResult,
TranslationResult,
TranslationRecognizerRealtime
)
import dashscope
from datetime import datetime
import json
import sys
class Callback(TranslationRecognizerCallback):
"""
语音大模型流式传输回调对象
"""
def __init__(self):
super().__init__()
self.usage = 0
self.cur_id = -1
self.time_str = ''
def on_open(self) -> None:
# print("on_open")
pass
def on_close(self) -> None:
# print("on_close")
pass
def on_event(
self,
request_id,
transcription_result: TranscriptionResult,
translation_result: TranslationResult,
usage
) -> None:
caption = {}
if transcription_result is not None:
caption['index'] = transcription_result.sentence_id
caption['text'] = transcription_result.text
if caption['index'] != self.cur_id:
self.cur_id = caption['index']
cur_time = datetime.now().strftime('%H:%M:%S.%f')[:-3]
caption['time_s'] = cur_time
self.time_str = cur_time
else:
caption['time_s'] = self.time_str
caption['time_t'] = datetime.now().strftime('%H:%M:%S.%f')[:-3]
caption['translation'] = ""
if translation_result is not None:
lang = translation_result.get_language_list()[0]
caption['translation'] = translation_result.get_translation(lang).text
if usage:
self.usage += usage['duration']
# print(caption)
self.send_to_node(caption)
def send_to_node(self, data):
"""
将数据发送到 Node.js 进程
"""
try:
json_data = json.dumps(data) + '\n'
sys.stdout.write(json_data)
sys.stdout.flush()
except Exception as e:
print(f"Error sending data to Node.js: {e}", file=sys.stderr)
class GummyTranslator:
"""
使用 Gummy 引擎流式处理的音频数据,并在标准输出中输出与 Auto Caption 软件可读取的 JSON 字符串数据
初始化参数:
rate: 音频采样率
source: 源语言代码字符串zh, en, ja 等)
target: 目标语言代码字符串zh, en, ja 等)
"""
def __init__(self, rate, source, target, api_key):
if api_key:
dashscope.api_key = api_key
self.translator = TranslationRecognizerRealtime(
model = "gummy-realtime-v1",
format = "pcm",
sample_rate = rate,
transcription_enabled = True,
translation_enabled = (target is not None),
source_language = source,
translation_target_languages = [target],
callback = Callback()
)
def start(self):
"""启动 Gummy 引擎"""
self.translator.start()
def send_audio_frame(self, data):
"""发送音频帧"""
self.translator.send_audio_frame(data)
def stop(self):
"""停止 Gummy 引擎"""
self.translator.stop()

View File

@@ -0,0 +1 @@
from .process import mergeChunkChannels, resampleRawChunk, resampleMonoChunk

View File

@@ -0,0 +1,68 @@
import samplerate
import numpy as np
def mergeChunkChannels(chunk, channels):
"""
将当前多通道音频数据块转换为单通道音频数据块
Args:
chunk: (bytes)多通道音频数据块
channels: 通道数
Returns:
(bytes)单通道音频数据块
"""
# (length * channels,)
chunk_np = np.frombuffer(chunk, dtype=np.int16)
# (length, channels)
chunk_np = chunk_np.reshape(-1, channels)
# (length,)
chunk_mono_f = np.mean(chunk_np.astype(np.float32), axis=1)
chunk_mono = np.round(chunk_mono_f).astype(np.int16)
return chunk_mono.tobytes()
def resampleRawChunk(chunk, channels, orig_sr, target_sr, mode="sinc_best"):
"""
将当前多通道音频数据块转换成单通道音频数据块,然后进行重采样
Args:
chunk: (bytes)多通道音频数据块
channels: 通道数
orig_sr: 原始采样率
target_sr: 目标采样率
mode: 重采样模式,可选:'sinc_best' | 'sinc_medium' | 'sinc_fastest' | 'zero_order_hold' | 'linear'
Return:
(bytes)单通道音频数据块
"""
# (length * channels,)
chunk_np = np.frombuffer(chunk, dtype=np.int16)
# (length, channels)
chunk_np = chunk_np.reshape(-1, channels)
# (length,)
chunk_mono_f = np.mean(chunk_np.astype(np.float32), axis=1)
chunk_mono = chunk_mono_f.astype(np.int16)
ratio = target_sr / orig_sr
chunk_mono_r = samplerate.resample(chunk_mono, ratio, converter_type=mode)
chunk_mono_r = np.round(chunk_mono_r).astype(np.int16)
return chunk_mono_r.tobytes()
def resampleMonoChunk(chunk, orig_sr, target_sr, mode="sinc_best"):
"""
将当前单通道音频块进行重采样
Args:
chunk: (bytes)单通道音频数据块
orig_sr: 原始采样率
target_sr: 目标采样率
mode: 重采样模式,可选:'sinc_best' | 'sinc_medium' | 'sinc_fastest' | 'zero_order_hold' | 'linear'
Return:
(bytes)单通道音频数据块
"""
chunk_np = np.frombuffer(chunk, dtype=np.int16)
ratio = target_sr / orig_sr
chunk_r = samplerate.resample(chunk_np, ratio, converter_type=mode)
chunk_r = np.round(chunk_r).astype(np.int16)
return chunk_r.tobytes()

58
engine/main-gummy.py Normal file
View File

@@ -0,0 +1,58 @@
import sys
import argparse
if sys.platform == 'win32':
from sysaudio.win import AudioStream
elif sys.platform == 'darwin':
from sysaudio.darwin import AudioStream
elif sys.platform == 'linux':
from sysaudio.linux import AudioStream
else:
raise NotImplementedError(f"Unsupported platform: {sys.platform}")
from audioprcs import mergeChunkChannels
from audio2text import InvalidParameter, GummyTranslator
def convert_audio_to_text(s_lang, t_lang, audio_type, chunk_rate, api_key):
sys.stdout.reconfigure(line_buffering=True) # type: ignore
stream = AudioStream(audio_type, chunk_rate)
if t_lang == 'none':
gummy = GummyTranslator(stream.RATE, s_lang, None, api_key)
else:
gummy = GummyTranslator(stream.RATE, s_lang, t_lang, api_key)
stream.openStream()
gummy.start()
while True:
try:
chunk = stream.read_chunk()
chunk_mono = mergeChunkChannels(chunk, stream.CHANNELS)
try:
gummy.send_audio_frame(chunk_mono)
except InvalidParameter:
gummy.start()
gummy.send_audio_frame(chunk_mono)
except KeyboardInterrupt:
stream.closeStream()
gummy.stop()
break
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Convert system audio stream to text')
parser.add_argument('-s', '--source_language', default='en', help='Source language code')
parser.add_argument('-t', '--target_language', default='zh', help='Target language code')
parser.add_argument('-a', '--audio_type', default=0, help='Audio stream source: 0 for output audio stream, 1 for input audio stream')
parser.add_argument('-c', '--chunk_rate', default=20, help='The number of audio stream chunks collected per second.')
parser.add_argument('-k', '--api_key', default='', help='API KEY for Gummy model')
args = parser.parse_args()
convert_audio_to_text(
args.source_language,
args.target_language,
int(args.audio_type),
int(args.chunk_rate),
args.api_key
)

39
engine/main-gummy.spec Normal file
View File

@@ -0,0 +1,39 @@
# -*- mode: python ; coding: utf-8 -*-
a = Analysis(
['main-gummy.py'],
pathex=[],
binaries=[],
datas=[],
hiddenimports=[],
hookspath=[],
hooksconfig={},
runtime_hooks=[],
excludes=[],
noarchive=False,
optimize=0,
)
pyz = PYZ(a.pure)
exe = EXE(
pyz,
a.scripts,
a.binaries,
a.datas,
[],
name='main-gummy',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=True,
upx_exclude=[],
runtime_tmpdir=None,
console=True,
disable_windowed_traceback=False,
argv_emulation=False,
target_arch=None,
codesign_identity=None,
entitlements_file=None,
onefile=True,
)

83
engine/main-vosk.py Normal file
View File

@@ -0,0 +1,83 @@
import sys
import json
import argparse
from datetime import datetime
import numpy.core.multiarray
if sys.platform == 'win32':
from sysaudio.win import AudioStream
elif sys.platform == 'darwin':
from sysaudio.darwin import AudioStream
elif sys.platform == 'linux':
from sysaudio.linux import AudioStream
else:
raise NotImplementedError(f"Unsupported platform: {sys.platform}")
from vosk import Model, KaldiRecognizer, SetLogLevel
from audioprcs import resampleRawChunk
SetLogLevel(-1)
def convert_audio_to_text(audio_type, chunk_rate, model_path):
sys.stdout.reconfigure(line_buffering=True) # type: ignore
if model_path.startswith('"'):
model_path = model_path[1:]
if model_path.endswith('"'):
model_path = model_path[:-1]
model = Model(model_path)
recognizer = KaldiRecognizer(model, 16000)
stream = AudioStream(audio_type, chunk_rate)
stream.openStream()
time_str = ''
cur_id = 0
prev_content = ''
while True:
chunk = stream.read_chunk()
chunk_mono = resampleRawChunk(chunk, stream.CHANNELS, stream.RATE, 16000)
caption = {}
if recognizer.AcceptWaveform(chunk_mono):
content = json.loads(recognizer.Result()).get('text', '')
caption['index'] = cur_id
caption['text'] = content
caption['time_s'] = time_str
caption['time_t'] = datetime.now().strftime('%H:%M:%S.%f')[:-3]
caption['translation'] = ''
prev_content = ''
cur_id += 1
else:
content = json.loads(recognizer.PartialResult()).get('partial', '')
if content == '' or content == prev_content:
continue
if prev_content == '':
time_str = datetime.now().strftime('%H:%M:%S.%f')[:-3]
caption['index'] = cur_id
caption['text'] = content
caption['time_s'] = time_str
caption['time_t'] = datetime.now().strftime('%H:%M:%S.%f')[:-3]
caption['translation'] = ''
prev_content = content
try:
json_str = json.dumps(caption) + '\n'
sys.stdout.write(json_str)
sys.stdout.flush()
except Exception as e:
print(e)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Convert system audio stream to text')
parser.add_argument('-a', '--audio_type', default=0, help='Audio stream source: 0 for output audio stream, 1 for input audio stream')
parser.add_argument('-c', '--chunk_rate', default=20, help='The number of audio stream chunks collected per second.')
parser.add_argument('-m', '--model_path', default='', help='The path to the vosk model.')
args = parser.parse_args()
convert_audio_to_text(
int(args.audio_type),
int(args.chunk_rate),
args.model_path
)

47
engine/main-vosk.spec Normal file
View File

@@ -0,0 +1,47 @@
# -*- mode: python ; coding: utf-8 -*-
from pathlib import Path
import sys
if sys.platform == 'win32':
vosk_path = str(Path('./subenv/Lib/site-packages/vosk').resolve())
else:
vosk_path = str(Path('./subenv/lib/python3.12/site-packages/vosk').resolve())
a = Analysis(
['main-vosk.py'],
pathex=[],
binaries=[],
datas=[(vosk_path, 'vosk')],
hiddenimports=[],
hookspath=[],
hooksconfig={},
runtime_hooks=[],
excludes=[],
noarchive=False,
optimize=0,
)
pyz = PYZ(a.pure)
exe = EXE(
pyz,
a.scripts,
a.binaries,
a.datas,
[],
name='main-vosk',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=True,
upx_exclude=[],
runtime_tmpdir=None,
console=True,
disable_windowed_traceback=False,
argv_emulation=False,
target_arch=None,
codesign_identity=None,
entitlements_file=None,
onefile=True,
)

View File

@@ -0,0 +1,6 @@
dashscope
numpy
samplerate
PyAudio
vosk
pyinstaller

View File

@@ -0,0 +1,5 @@
dashscope
numpy
vosk
pyinstaller
samplerate # pip install samplerate --only-binary=:all:

View File

@@ -0,0 +1,6 @@
dashscope
numpy
samplerate
PyAudioWPatch
vosk
pyinstaller

View File

85
engine/sysaudio/darwin.py Normal file
View File

@@ -0,0 +1,85 @@
"""获取 MacOS 系统音频输入/输出流"""
import pyaudio
class AudioStream:
"""
获取系统音频流(支持 BlackHole 作为系统音频输出捕获)
初始化参数:
audio_type: 0-系统音频输出流(需配合 BlackHole1-系统音频输入流
chunk_rate: 每秒采集音频块的数量默认为20
"""
def __init__(self, audio_type=0, chunk_rate=20):
self.audio_type = audio_type
self.mic = pyaudio.PyAudio()
if self.audio_type == 0:
self.device = self.getOutputDeviceInfo()
else:
self.device = self.mic.get_default_input_device_info()
self.stream = None
self.SAMP_WIDTH = pyaudio.get_sample_size(pyaudio.paInt16)
self.FORMAT = pyaudio.paInt16
self.CHANNELS = self.device["maxInputChannels"]
self.RATE = int(self.device["defaultSampleRate"])
self.CHUNK = self.RATE // chunk_rate
self.INDEX = self.device["index"]
def getOutputDeviceInfo(self):
"""查找指定关键词的输入设备"""
device_count = self.mic.get_device_count()
for i in range(device_count):
dev_info = self.mic.get_device_info_by_index(i)
if 'blackhole' in dev_info["name"].lower():
return dev_info
raise Exception("The device containing BlackHole was not found.")
def printInfo(self):
dev_info = f"""
采样输入设备:
- 设备类型:{ "音频输出" if self.audio_type == 0 else "音频输入" }
- 序号:{self.device['index']}
- 名称:{self.device['name']}
- 最大输入通道数:{self.device['maxInputChannels']}
- 默认低输入延迟:{self.device['defaultLowInputLatency']}s
- 默认高输入延迟:{self.device['defaultHighInputLatency']}s
- 默认采样率:{self.device['defaultSampleRate']}Hz
音频样本块大小:{self.CHUNK}
样本位宽:{self.SAMP_WIDTH}
采样格式:{self.FORMAT}
音频通道数:{self.CHANNELS}
音频采样率:{self.RATE}
"""
print(dev_info)
def openStream(self):
"""
打开并返回系统音频输出流
"""
if self.stream: return self.stream
self.stream = self.mic.open(
format = self.FORMAT,
channels = int(self.CHANNELS),
rate = self.RATE,
input = True,
input_device_index = int(self.INDEX)
)
return self.stream
def read_chunk(self):
"""
读取音频数据
"""
if not self.stream: return None
return self.stream.read(self.CHUNK, exception_on_overflow=False)
def closeStream(self):
"""
关闭系统音频输出流
"""
if self.stream is None: return
self.stream.stop_stream()
self.stream.close()
self.stream = None

94
engine/sysaudio/linux.py Normal file
View File

@@ -0,0 +1,94 @@
"""获取 Linux 系统音频输入流"""
import subprocess
def findMonitorSource():
result = subprocess.run(
["pactl", "list", "short", "sources"],
stdout=subprocess.PIPE, text=True
)
lines = result.stdout.splitlines()
for line in lines:
parts = line.split('\t')
if len(parts) >= 2 and ".monitor" in parts[1]:
return parts[1]
raise RuntimeError("System output monitor device not found")
def findInputSource():
result = subprocess.run(
["pactl", "list", "short", "sources"],
stdout=subprocess.PIPE, text=True
)
lines = result.stdout.splitlines()
for line in lines:
parts = line.split('\t')
name = parts[1]
if ".monitor" not in name:
return name
raise RuntimeError("Microphone input device not found")
class AudioStream:
"""
获取系统音频流
初始化参数:
audio_type: 0-系统音频输出流不支持不会生效1-系统音频输入流(默认)
chunk_rate: 每秒采集音频块的数量默认为20
"""
def __init__(self, audio_type=1, chunk_rate=20):
self.audio_type = audio_type
if self.audio_type == 0:
self.source = findMonitorSource()
else:
self.source = findInputSource()
self.process = None
self.SAMP_WIDTH = 2
self.FORMAT = 16
self.CHANNELS = 2
self.RATE = 48000
self.CHUNK = self.RATE // chunk_rate
def printInfo(self):
dev_info = f"""
音频捕获进程:
- 捕获类型:{"音频输出" if self.audio_type == 0 else "音频输入"}
- 设备源:{self.source}
- 捕获进程PID{self.process.pid if self.process else "None"}
音频样本块大小:{self.CHUNK}
样本位宽:{self.SAMP_WIDTH}
采样格式:{self.FORMAT}
音频通道数:{self.CHANNELS}
音频采样率:{self.RATE}
"""
print(dev_info)
def openStream(self):
"""
启动音频捕获进程
"""
self.process = subprocess.Popen(
["parec", "-d", self.source, "--format=s16le", "--rate=48000", "--channels=2"],
stdout=subprocess.PIPE
)
def read_chunk(self):
"""
读取音频数据
"""
if self.process:
return self.process.stdout.read(self.CHUNK)
return None
def closeStream(self):
"""
关闭系统音频捕获进程
"""
if self.process:
self.process.terminate()

113
engine/sysaudio/win.py Normal file
View File

@@ -0,0 +1,113 @@
"""获取 Windows 系统音频输入/输出流"""
import pyaudiowpatch as pyaudio
def getDefaultLoopbackDevice(mic: pyaudio.PyAudio, info = True)->dict:
"""
获取默认的系统音频输出的回环设备
Args:
mic (pyaudio.PyAudio): pyaudio对象
info (bool, optional): 是否打印设备信息
Returns:
dict: 系统音频输出的回环设备
"""
try:
WASAPI_info = mic.get_host_api_info_by_type(pyaudio.paWASAPI)
except OSError:
print("Looks like WASAPI is not available on the system. Exiting...")
exit()
default_speaker = mic.get_device_info_by_index(WASAPI_info["defaultOutputDevice"])
if(info): print("wasapi_info:\n", WASAPI_info, "\n")
if(info): print("default_speaker:\n", default_speaker, "\n")
if not default_speaker["isLoopbackDevice"]:
for loopback in mic.get_loopback_device_info_generator():
if default_speaker["name"] in loopback["name"]:
default_speaker = loopback
if(info): print("Using loopback device:\n", default_speaker, "\n")
break
else:
print("Default loopback output device not found.")
print("Run `python -m pyaudiowpatch` to check available devices.")
print("Exiting...")
exit()
if(info): print(f"Output Stream Device: #{default_speaker['index']} {default_speaker['name']}")
return default_speaker
class AudioStream:
"""
获取系统音频流
初始化参数:
audio_type: 0-系统音频输出流默认1-系统音频输入流
chunk_rate: 每秒采集音频块的数量默认为20
"""
def __init__(self, audio_type=0, chunk_rate=20):
self.audio_type = audio_type
self.mic = pyaudio.PyAudio()
if self.audio_type == 0:
self.device = getDefaultLoopbackDevice(self.mic, False)
else:
self.device = self.mic.get_default_input_device_info()
self.stream = None
self.SAMP_WIDTH = pyaudio.get_sample_size(pyaudio.paInt16)
self.FORMAT = pyaudio.paInt16
self.CHANNELS = int(self.device["maxInputChannels"])
self.RATE = int(self.device["defaultSampleRate"])
self.CHUNK = self.RATE // chunk_rate
self.INDEX = self.device["index"]
def printInfo(self):
dev_info = f"""
采样设备:
- 设备类型:{ "音频输出" if self.audio_type == 0 else "音频输入" }
- 序号:{self.device['index']}
- 名称:{self.device['name']}
- 最大输入通道数:{self.device['maxInputChannels']}
- 默认低输入延迟:{self.device['defaultLowInputLatency']}s
- 默认高输入延迟:{self.device['defaultHighInputLatency']}s
- 默认采样率:{self.device['defaultSampleRate']}Hz
- 是否回环设备:{self.device['isLoopbackDevice']}
音频样本块大小:{self.CHUNK}
样本位宽:{self.SAMP_WIDTH}
采样格式:{self.FORMAT}
音频通道数:{self.CHANNELS}
音频采样率:{self.RATE}
"""
print(dev_info)
def openStream(self):
"""
打开并返回系统音频输出流
"""
if self.stream: return self.stream
self.stream = self.mic.open(
format = self.FORMAT,
channels = self.CHANNELS,
rate = self.RATE,
input = True,
input_device_index = self.INDEX
)
return self.stream
def read_chunk(self):
"""
读取音频数据
"""
if not self.stream: return None
return self.stream.read(self.CHUNK, exception_on_overflow=False)
def closeStream(self):
"""
关闭系统音频输出流
"""
if self.stream is None: return
self.stream.stop_stream()
self.stream.close()
self.stream = None