feat(engine): 替换重采样模型、SOSV 添加标点恢复模型

- 将 samplerate 库替换为 resampy 库,提高重采样质量
- Shepra-ONNX SenseVoice 添加中文和英语标点恢复模型
This commit is contained in:
himeditator
2025-09-06 23:15:33 +08:00
parent eba2c5ca45
commit 6bff978b88
7 changed files with 85 additions and 113 deletions

View File

@@ -9,6 +9,7 @@ https://github.com/k2-fsa/sherpa-onnx/blob/master/python-api-examples/simulate-s
import time
from datetime import datetime
import sherpa_onnx
import threading
import numpy as np
from utils import shared_data
@@ -23,23 +24,27 @@ class SosvRecognizer:
初始化参数:
model_path: Shepra ONNX Sense Voice 识别模型路径
vad_model: Silero VAD 模型路径
source: 识别源语言(auto, zh, en, ja, ko, yue)
target: 翻译目标语言
trans_model: 翻译模型名称
ollama_name: Ollama 模型名称
"""
def __init__(self, model_path: str, target: str | None, trans_model: str, ollama_name: str):
def __init__(self, model_path: str, source: str, target: str | None, trans_model: str, ollama_name: str):
if model_path.startswith('"'):
model_path = model_path[1:]
if model_path.endswith('"'):
model_path = model_path[:-1]
self.model_path = model_path
self.ext = ""
if self.model_path[-4:] == "int8":
self.ext = ".int8"
self.source = source
self.target = target
if trans_model == 'google':
self.trans_func = google_translate
else:
self.trans_func = ollama_translate
self.ollama_name = ollama_name
self.time_str = ''
self.cur_id = 0
self.prev_content = ''
@@ -47,19 +52,39 @@ class SosvRecognizer:
def start(self):
"""启动 Sense Voice 模型"""
self.recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
model=f"{self.model_path}/model.onnx",
tokens=f"{self.model_path}/tokens.txt",
model=f"{self.model_path}/sensevoice/model{self.ext}.onnx",
tokens=f"{self.model_path}/sensevoice/tokens.txt",
language=self.source,
num_threads = 2,
)
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = f"{self.model_path}/silero_vad.onnx"
config.silero_vad.threshold = 0.5
config.silero_vad.min_silence_duration = 0.1
config.silero_vad.min_speech_duration = 0.25
config.silero_vad.max_speech_duration = 8
config.sample_rate = 16000
self.window_size = config.silero_vad.window_size
self.vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=100)
vad_config = sherpa_onnx.VadModelConfig()
vad_config.silero_vad.model = f"{self.model_path}/silero_vad.onnx"
vad_config.silero_vad.threshold = 0.5
vad_config.silero_vad.min_silence_duration = 0.1
vad_config.silero_vad.min_speech_duration = 0.25
vad_config.silero_vad.max_speech_duration = 8
vad_config.sample_rate = 16000
self.window_size = vad_config.silero_vad.window_size
self.vad = sherpa_onnx.VoiceActivityDetector(vad_config, buffer_size_in_seconds=100)
if self.source == 'en':
model_config = sherpa_onnx.OnlinePunctuationModelConfig(
cnn_bilstm=f"{self.model_path}/punct-en/model{self.ext}.onnx",
bpe_vocab=f"{self.model_path}/punct-en/bpe.vocab"
)
punct_config = sherpa_onnx.OnlinePunctuationConfig(
model_config=model_config,
)
self.punct = sherpa_onnx.OnlinePunctuation(punct_config)
else:
punct_config = sherpa_onnx.OfflinePunctuationConfig(
model=sherpa_onnx.OfflinePunctuationModelConfig(
ct_transformer=f"{self.model_path}/punct/model{self.ext}.onnx"
),
)
self.punct = sherpa_onnx.OfflinePunctuation(punct_config)
self.buffer = []
self.offset = 0
self.started = False
@@ -112,15 +137,27 @@ class SosvRecognizer:
self.vad.pop()
self.recognizer.decode_stream(stream)
text = stream.result.text.strip()
if self.source == 'en':
text_with_punct = self.punct.add_punctuation_with_case(text)
else:
text_with_punct = self.punct.add_punctuation(text)
caption['index'] = self.cur_id
caption['text'] = text
caption['text'] = text_with_punct
caption['time_s'] = self.time_str
caption['time_t'] = datetime.now().strftime('%H:%M:%S.%f')[:-3]
if text:
stdout_obj(caption)
if self.target:
th = threading.Thread(
target=self.trans_func,
args=(self.ollama_name, self.target, caption['text'], self.time_str),
daemon=True
)
th.start()
self.cur_id += 1
self.prev_content = ''
stdout_obj(caption)
self.cur_id += 1
self.time_str = datetime.now().strftime('%H:%M:%S.%f')[:-3]
self.buffer = []
self.offset = 0

View File

@@ -62,11 +62,12 @@ class VoskRecognizer:
self.prev_content = ''
if content == '': return
self.cur_id += 1
if self.target:
self.trans_time = time.time()
th = threading.Thread(
target=self.trans_func,
args=(self.ollama_name, self.target, caption['text'], self.time_str)
args=(self.ollama_name, self.target, caption['text'], self.time_str),
daemon=True
)
th.start()
else:

View File

@@ -10,23 +10,26 @@ from audio2text import SosvRecognizer
from sysaudio import AudioStream
def audio_recording(stream: AudioStream, resample: bool, save = False):
def audio_recording(stream: AudioStream, resample: bool, save = False, path = ''):
global shared_data
stream.open_stream()
wf = None
if save:
wf = wave.open(f'record.wav', 'wb')
wf.setnchannels(1)
if path != '':
path += '/'
wf = wave.open(f'{path}record.wav', 'wb')
wf.setnchannels(stream.CHANNELS)
wf.setsampwidth(stream.SAMP_WIDTH)
wf.setframerate(16000)
wf.setframerate(stream.CHUNK_RATE)
while shared_data.status == 'running':
raw_chunk = stream.read_chunk()
if save: wf.writeframes(raw_chunk) # type: ignore
if raw_chunk is None: continue
if resample:
chunk = resample_chunk_mono(raw_chunk, stream.CHANNELS, stream.RATE, 16000)
else:
chunk = merge_chunk_channels(raw_chunk, stream.CHANNELS)
shared_data.chunk_queue.put(chunk)
if save: wf.writeframes(chunk) # type: ignore
if save: wf.close() # type: ignore
stream.close_stream_signal()
@@ -88,21 +91,22 @@ def main_vosk(a: int, c: int, vosk: str, t: str, tm: str, omn: str):
engine.stop()
def main_sosv(a: int, c: int, sosv: str, t: str, tm: str, omn: str):
def main_sosv(a: int, c: int, sosv: str, s: str, t: str, tm: str, omn: str):
"""
Parameters:
a: Audio source: 0 for output, 1 for input
c: Chunk number in 1 second
sosv: Sherpa-ONNX SenseVoice model path
s: Source language
t: Target language
tm: Translation model type, ollama or google
omn: Ollama model name
"""
stream = AudioStream(a, c)
if t == 'none':
engine = SosvRecognizer(sosv, None, tm, omn)
engine = SosvRecognizer(sosv, s, None, tm, omn)
else:
engine = SosvRecognizer(sosv, t, tm, omn)
engine = SosvRecognizer(sosv, s, t, tm, omn)
engine.start()
stream_thread = threading.Thread(
@@ -120,14 +124,15 @@ def main_sosv(a: int, c: int, sosv: str, t: str, tm: str, omn: str):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Convert system audio stream to text')
# both
# all
parser.add_argument('-e', '--caption_engine', default='gummy', help='Caption engine: gummy or vosk')
parser.add_argument('-a', '--audio_type', default=0, help='Audio stream source: 0 for output, 1 for input')
parser.add_argument('-c', '--chunk_rate', default=10, help='Number of audio stream chunks collected per second')
parser.add_argument('-p', '--port', default=0, help='The port to run the server on, 0 for no server')
parser.add_argument('-t', '--target_language', default='zh', help='Target language code, "none" for no translation')
# gummy and sosv
parser.add_argument('-s', '--source_language', default='auto', help='Source language code')
# gummy only
parser.add_argument('-s', '--source_language', default='en', help='Source language code')
parser.add_argument('-k', '--api_key', default='', help='API KEY for Gummy model')
# vosk and sosv
parser.add_argument('-tm', '--translation_model', default='ollama', help='Model for translation: ollama or google')
@@ -165,6 +170,7 @@ if __name__ == "__main__":
int(args.audio_type),
int(args.chunk_rate),
args.sosv_model,
args.source_language,
args.target_language,
args.translation_model,
args.ollama_name

View File

@@ -1,9 +1,10 @@
dashscope
numpy
samplerate
resampy
vosk
pyinstaller
pyaudio; sys_platform == 'darwin'
pyaudiowpatch; sys_platform == 'win32'
googletrans
ollama
sherpa_onnx

View File

@@ -1,9 +1,4 @@
from .audioprcs import (
merge_chunk_channels,
resample_chunk_mono,
resample_chunk_mono_np,
resample_mono_chunk
)
from .audioprcs import merge_chunk_channels, resample_chunk_mono
from .sysout import stdout, stdout_err, stdout_cmd, stdout_obj, stderr
from .shared import shared_data
from .server import start_server

View File

@@ -1,4 +1,4 @@
import samplerate
import resampy
import numpy as np
import numpy.core.multiarray # do not remove
@@ -24,16 +24,15 @@ def merge_chunk_channels(chunk: bytes, channels: int) -> bytes:
return chunk_mono.tobytes()
def resample_chunk_mono(chunk: bytes, channels: int, orig_sr: int, target_sr: int, mode="sinc_best") -> bytes:
def resample_chunk_mono(chunk: bytes, channels: int, orig_sr: int, target_sr: int) -> bytes:
"""
将当前多通道音频数据块转换成单通道音频数据块,然后进行重采样
将当前多通道音频数据块转换成单通道音频数据块,进行重采样
Args:
chunk: 多通道音频数据块
channels: 通道数
orig_sr: 原始采样率
target_sr: 目标采样率
mode: 重采样模式,可选:'sinc_best' | 'sinc_medium' | 'sinc_fastest' | 'zero_order_hold' | 'linear'
Return:
单通道音频数据块
@@ -52,82 +51,14 @@ def resample_chunk_mono(chunk: bytes, channels: int, orig_sr: int, target_sr: in
if orig_sr == target_sr:
return chunk_mono.astype(np.int16).tobytes()
ratio = target_sr / orig_sr
chunk_mono_r = samplerate.resample(chunk_mono, ratio, converter_type=mode)
chunk_mono_r = resampy.resample(chunk_mono, orig_sr, target_sr)
chunk_mono_r = np.round(chunk_mono_r).astype(np.int16)
real_len = round(chunk_mono.shape[0] * ratio)
real_len = round(chunk_mono.shape[0] * target_sr / orig_sr)
if(chunk_mono_r.shape[0] != real_len):
print(chunk_mono_r.shape[0], real_len)
if(chunk_mono_r.shape[0] > real_len):
chunk_mono_r = chunk_mono_r[:real_len]
else:
while chunk_mono_r.shape[0] < real_len:
chunk_mono_r = np.append(chunk_mono_r, chunk_mono_r[-1])
return chunk_mono_r.tobytes()
def resample_chunk_mono_np(chunk: bytes, channels: int, orig_sr: int, target_sr: int, mode="sinc_best", dtype=np.float32) -> np.ndarray:
"""
将当前多通道音频数据块转换成单通道音频数据块,然后进行重采样,返回 Numpy 数组
Args:
chunk: 多通道音频数据块
channels: 通道数
orig_sr: 原始采样率
target_sr: 目标采样率
mode: 重采样模式,可选:'sinc_best' | 'sinc_medium' | 'sinc_fastest' | 'zero_order_hold' | 'linear'
dtype: 返回 Numpy 数组的数据类型
Return:
单通道音频数据块
"""
if channels == 1:
chunk_mono = np.frombuffer(chunk, dtype=np.int16)
chunk_mono = chunk_mono.astype(np.float32)
else:
# (length * channels,)
chunk_np = np.frombuffer(chunk, dtype=np.int16)
# (length, channels)
chunk_np = chunk_np.reshape(-1, channels)
# (length,)
chunk_mono = np.mean(chunk_np.astype(np.float32), axis=1)
if orig_sr == target_sr:
return chunk_mono.astype(dtype)
ratio = target_sr / orig_sr
chunk_mono_r = samplerate.resample(chunk_mono, ratio, converter_type=mode)
chunk_mono_r = chunk_mono_r.astype(dtype)
real_len = round(chunk_mono.shape[0] * ratio)
if(chunk_mono_r.shape[0] > real_len):
chunk_mono_r = chunk_mono_r[:real_len]
else:
while chunk_mono_r.shape[0] < real_len:
chunk_mono_r = np.append(chunk_mono_r, chunk_mono_r[-1])
return chunk_mono_r
def resample_mono_chunk(chunk: bytes, orig_sr: int, target_sr: int, mode="sinc_best") -> bytes:
"""
将当前单通道音频块进行重采样
Args:
chunk: 单通道音频数据块
orig_sr: 原始采样率
target_sr: 目标采样率
mode: 重采样模式,可选:'sinc_best' | 'sinc_medium' | 'sinc_fastest' | 'zero_order_hold' | 'linear'
Return:
单通道音频数据块
"""
if orig_sr == target_sr: return chunk
chunk_np = np.frombuffer(chunk, dtype=np.int16)
chunk_np = chunk_np.astype(np.float32)
ratio = target_sr / orig_sr
chunk_r = samplerate.resample(chunk_np, ratio, converter_type=mode)
chunk_r = np.round(chunk_r).astype(np.int16)
real_len = round(chunk_np.shape[0] * ratio)
if(chunk_r.shape[0] > real_len):
chunk_r = chunk_r[:real_len]
else:
while chunk_r.shape[0] < real_len:
chunk_r = np.append(chunk_r, chunk_r[-1])
return chunk_r.tobytes()

View File

@@ -13,6 +13,7 @@ lang_map = {
'ru': 'Russian',
'ja': 'Japanese',
'ko': 'Korean',
'zh': 'Chinese',
'zh-cn': 'Chinese'
}